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ABSTRACT

Dynamic Time Warping (DTW) is a Dynamic
Programming technique widely used for solving time-
alignment problems. The classical DTW constrains
only the first derivative of the warping function, hence
allowing no direct control over' the warping function
curvature.  Moreover, it  implicitly = assumes-
inappropriately for some applications- that the noise is
white. We propose a multi-dimensional Dynamic-
Programming technique which can efficiently solve
time-warping optimization problems involving colored
noise, and allows control over the warping function
curvature. The technique is demonstrated for the co-
channel speech separation problem. Applications
employing DTW can benefit from the new technique,
which offers improved accuracy and robustness in the
presence of colored noise and competing speech.

1: Introduction

Dynamic Time Warping (DTW) is a Dynamic
Programming (DP) technique widely used for solving
time alignment problems in diverse speech processing
applications [4].  Recently, DTW was used in
estimating the parameters of a long-term model for
voiced speech, aimed primarily at the co-channel
speech separation problem [1]{2]. According to the
model, each voiced phoneme is the outcome of two
transformations applied to a strictly periodic signal,
plus additive Gaussian noise. The first transformation
is a non-linear time-warp, resulting in a quasi-periodic
signal. The second transformation is a linear time-
varying filtering operation. The derivative of the time-
warping function represents the instantaneous pitch.

As part of a ML estimation procedure proposed in [1],
it is required to find a warping function that optimizes
a quadratic cost function. Unfortunately, the cost
function value at any given time depends not only on
the warping function value at that time, but also on
near past and future values. Consequently, the cost
function is not local (according to the classical DTW
terminology), hence the conventional DTW technique
does not apply. Nevertheless, lacking a better
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alternative at the time, a conventional DTW [4] was
used in [1] as a sub-optimal solution.

When applying the long-term model to the co-channel
speech separation problem, the model parameters of
both speakers - including the warping functions - need
to be estimated simultaneously. For robust estimation,
the warping functions must be tightly constrained, so
that each can track the pitch variations of one, and only
one, speaker.

The classical DTW technique constrains only the first
derivative of the warping function, hence allowing no
direct control over the warping function curvature, One
possible improvement is to construct a cost function
that depends also on the low-order derivatives of the
watping function. Such a cost function could provide
path control by penalizing deviations of the warping
function from a smooth curve, and can be regarded as a
"soft" constraint.

We will show that in cases where the non-local cost
function has a bounded support, and the "soft"
constraint involves a small number of low-order
derivatives, the above two problems may be jointly
formulated in a such a way that the Optimality
Criterion is still met and Dynamic Programming is
applicable. This is done by augmenting the dimension
of the DTW formulation. Once the multi-dimensional
warping function is estimated, it is projected onto the
original dimension to provide the sought after warping
function. The number of augmented dimensions is
equal to the maximum between the length of the non-
local cost function support, and the number of
derivatives used for the "soft" constraint.

Applications where DTW is currently used may
benefit from the new technique, which allows improved
accuracy and robustness, in the presence of colored
additive noise or competing speech.

The paper is organized as follows: Section 2 reviews
the conventional DTW technique. Section 3 defines the
time-warping problem with non-local cost functions.
Section 4 discusses path control by non-local soft
constraints. Section 5 describes the proposed multi-
dimensional DTW (MD-DTW) solution. In section 6,
the application to the co-channel speech separation



problem is outlined, , and section 7 concludes the
paper.

2: Principle of optimality and DTW

In the context of DTW problems [4], Bellman's
Principle of Optimality [3] implies that given an
optimal path ¢ from A to B, and a point C lying
somewhere on ¢ the path segments AC and CB
constitute optimal paths from A to C and from C to B,
respectively.  See [4] for various DTW schemes. A
DTW problem is solved using a grid. A local cost is
associated with each grid point (node) and/or with each
transition from one node to another. The optimal path
is constrained by the local path constraint. The optimal
path is found by accumulating the local costs, finding
the optimal endpoint, and finally back-tracking along
the optimal path. We will next consider a time-
warping problem involving non-local costs and path
constraints.

3: Non-local cost

Consider the following cost function
2
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where x(?) and s(2) are given signals, r() is a given
kernel, and ¢ is a time warping function satisfying
some constraints. Clearly the integrand - named a
Lagrangian in the terminology of optimal control - is a
function of ¢ alone if r(t) = 6(1) , hence the Optimality
Principle applies. Otherwise, the Optimality Principle
no longer applies since the Lagrangian at time ¢
depends also on some past and perhaps future values of
#(1). Consequently, an optimal decision on the present
value of ¢ is impossible since this decision also
affects future values of the Lagrangian. However,
assuming (¢} is causal and of finite duration d, the
integration limits of the inner integral become 0 to d.

Cost functions of the form (1) can be encountered in
diverse fields. In the context of the co-channel speech
separation problem, we wish to estimate a time warping
function ¢ in the ML sense. Assuming a Gaussian
noise, not necessarily white, one arrives at the weighted
least squares (WLS) problem stated in (1), where the
kernel () is the impulse response of a noise whitening
filter. Rewriting (1) in discrete-time notation, one
obtains

Jy= (x-(0)) Ax-(0))

@

175

where x, s and ¢ denote the discrete-time versions of
the signals x , s and @, respectively, and Q = R'R,
where R is a convolution matrix such that Rx is the
discrete equivalent of r@®*x@. Clearly, Q is a
symmetric positive semi-definite matrix, and is actually
the inverse of the covariance matrix of the Gaussian
noise. Furthermore, assuming as before that #(t) decays
fast, O becomes a diagonally-dominant sparse matrix.

4: Path control

In DTW, the local slope of the optimal path is
constrained by the Jocal path constraint. Yet in the co-
channel speech separation problem-as mentioned in the
introduction-it is beneficial to control some higher
derivatives (e.g. curvature) of the optimal path as well.
To this end, we add to the cost function (1) the
following term:

I p 2
Ji(0)= [ 2P, (6P)| ot
tp P=1

where b,,(*) are cost functions of the corresponding
n-th order derivative ¢#™ of ¢ Combining (2) and (3)
we write in discrete-time notation

J. 4~ (x _s(d’))r Q(x —s(¢)) + g[br(D Pd))]r[bP(DPd))]
C))

where D, is the matrix representing the * p-th order
discrete gifferentiation operator. For small enough
values of p, Dy is also a band-diagonal matrix.

3)

5. Multi-dimensional DTW (MD-DTW)

We wish to solve the time-warping problem where
both the cost and the constraints are non-local, i.e., we
wish to minimize Jy with respect to the warping
function ¢ To that end, we propose a multi-
dimensional DTW (MD-DTW) algorithm with a
dimension equal to one plus the largest expected
number of non-zero sub-diagonals in either O or Dy,

Since the simple local constraints commonly used in
DTW schemes [4] are too coarse for our application, we
upsample the reference vector by a factor M, and look
for the deviation of the warping function from a pure
time delay. Consequently, the DP problem is solved for
a new function 7 related to the original warping
function &(®) by n(H)=M-(4(f)-t) . Hence, using discrete
notation and a discrete grid, a pure delay corresponds
to a straight horizontal line.

To keep the dimension of the problem small, we
assume: a. the non-local cost kernel Q has only P



non-zero sub-diagonals, and b. the non-local
constraints involve only the first P; derivatives of
77("). Hence P=max(P;Py+1) is the problem's
dimension. We further assume the existence of hard
constraints - each of the first P; discrete derivatives
may take its values only from a corresponding finite set
of integers.

From the standpoint of discrete optimal control, the
state vector consists of the warping function and its
discrete derivatives of orders 1 through (P-1), while the
P-th derivative serves as the control variable. The cost
function is given in (4).

To demonstrate the MD-DTW, let us consider the
simple the case where Q is diagonal, and only the first
two derivatives are of interest, i.e., Pj=2, Py=1. The
dimension of the problem is P=max(P;,Py)=2. Let
the first and second derivatives assume values from the
sets Z;={2, 1, 0, -1, -2}, and Zp={l, 0, -1},
respectively. Fig. 1 below depicts all the transitions
that constitute feasible (i.e., with finite cost), left-to-
right, length 2, path segments, ending at some specific
node E. The numbers are the ordinates of the shown
grid nodes. Likewise, Fig. 2 below shows all 13 feasible
path segments of length 2 - leading to node E. In fact,
Fig. 1 may be viewed as a projection of Fig. 2 on the (¢,
1) plane.

Referring to fig. 2, we note that a final decision on the
optimal path leading to node E cannot be taken at /=2,
since this would explicitly select some path segment
from =1 to =2, which shall in turn affect the cost of
arriving at future nodes at =3 (not shown in the
figures). There are 5 possibilities to go from =1 to =2.
Since the final decision must be delayed until =3, the
solution is to compute 5 hypothesized accumulated
costs at node E, each conditioned on one of the 5
possibilities. By induction, all nodes in the grid must
have these 5 conditional accumulated costs.

Let us denote each node by its ¢ and #n time
coordinates. Node E is thus denoted by the ordered pair
(2,0). Since only 3 values of the second order derivative
are allowed, we need to consider only 3 possibilities
for the nodes {(1,-1), (1,0), (1,1)}. Furthermore,
because the first derivative cannot exceed 2 in absolute
value, there are only 2 possible preceding nodes for the
nodes {(1,-2), (1,2)}. Each node (¢,77) has 5 conditional
costs, denoted C,(t,77), n=1,..5, associated with it.
Likewise, let us denote a path segment by listing all the
nodes it travels through. Accordingly, all path
segments originating from nodes at /=0 and leading to
node E (Fig. 2) are denoted by groups of the form
{(0,1),(1,1),(2,0)}, where i, j and O are the 7 coordinates
at =0 (origin), =1 (intermediate) and =2
(destination), respectively. We need to decide, for each
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hypothesized intermediate node (1) j=1,...,5, on the
optimal source node (0,i) ie{j-17,/+1} of a path
segment going through (1) and arriving at the
destination (2,0). To that end, we need to minimize

C(20)=Min{C, (1.))+ L(0.)(1.1(20)} ©

with respect to i. C;_i(1) is the accumulated cost at
node (1,j) assuming t{lat the optimal path previously
passed through (0,i), and L({(0,1), (1,j), (2,0)}) is the
incremental cost (i.e., the Lagrangian value) due to the
path segment {(0,i), (1,j), (2,0)}. Eq. (5) is the basic
recursion of the MD- DTW for this simple case.

Unlike conventional DTW, here the accumulated cost
function is multi-valued, but DP may still be employed.

Consider next the same example from an optimal
control standpoint. Let the state variables be 77 and i],

or n7; and 7, in discrete notation. The discrete state
equations are

771(” + 1) = 771(") + nz(n)
M (n+1)=n,(n)+u(n) uln)e{-1,01}

where u(n) is the control variable. Fig. 3 below depicts
a 3 dimensional grid. The horizontal coordinate is
time, the vertical coordinate is 7; - the warping
function - and the depth axis is 7, - the first
derivative of the warping function. This constitutes a
two dimensional DP problem. In our example, 7) can
take only 5 possible values. Each of the nodes of Fig. 1
described above, with its 5 conditional costs, is replaced
by 5 separate nodes, spread along the 17 axis. Each
such node corresponds to one of the 5 possible values of
175, and takes the corresponding conditional cost
described above. The MD-DTW problem can now be
solved as an optimal control problem by a two-
dimensional DP procedure. The local constraint of
conventional DTW is replaced by the dynamics of the
state equations and the allowed range of control. Fig. 3
depicts an example of an optimal path (middle curve).
Its projections on the (,77) plane, the (£ 77) plane and
the (7, 77) plane, are the optimal warping function, its
derivative, and the state-space trajectory, respectively.

The above procedure is readily extendible to problems
having either cost functions with larger supports, or
higher order constraints. This is done simply by
augmenting dimensions and conditional costs to the
state-space formulation, solving the multi-dimensional
DP problem, and projecting the optimal path on the (7,
n) plane. The same is true for adding higher order
constraints.

Although the computational complexity of the above
technique remains O(N) - N being the utterance length
in samples - as in conventional DTW techniques, the
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number of operations is also proportional to an
exponential function of the dimension P. Hence the
technique is practically limited to small values of P.

6: Application to the co-channel
speech separation problem

In the co-channel speech separation problem, the goal
is to decompose the co-channel speech signal into
several signal components, one for each speaker,
mainly for intelligibility improvement. Recently, a
long-term model for voiced speech, was applied to the
co-channel speech separation problem [1][2], where as
part of the estimation procedure , it is required to find
a warping function that optimizes a quadratic cost
function of the form (2), where Q is a band-diagonal
matrix. In addition, each warping function must be
tightly constrained so that each can track the pitch
variations of one, and only one, speaker. The MD-
DTW was incorporated into an EM scheme [1][2] for
co-channel speech separation, where it was required to
minimize (4) with respect to the warping function ¢.
Due primarily to its tight higher-order constraints, it
managed to robustly estimate the warping functions in
most of the cases where the previously installed
conventional DTW scheme failed.

7: Discussion and summary

We propose a multi-dimensional DTW technique
which can efficiently solve optimizations problems of
the form (2) or (4), involving non-local cost and
constraints. Applications where DTW is currently used
may benefit from the new technique, which allows a
more accurate and robust time-warping in the presence
of colored additive noise or competing speech.
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original time t

Figure 1 - All feasible path segments leading (left to
right) to node E (rightmost node). The horizontal
axis is the original time axis t. The vertical axis is

n(t) =M (d)(t) ——t) The numbers on the vertical
axis are the ordinates of the shown grid nodes.

Figure 2 - All 13 feasible path segments leading (left
to right) to node E are shown stacked one after the
other. The horizontal axis is the time axis t¢. The

vertical axis is ﬂ(t) = M(CI)(t)—t). The numbers
on the vertical axis are the ordinates of the shown

grid nodes. The depth axis enumerates the feasible
path segments.

I = original time

Figure 3 - MD-DTW example. The optimal path is
the middle curve. Its projection on the (¢,7) plane is
the optimal warping function. The projection on the
@ i]) plane is the 1st order difference of the optimal
warping function. The projection on the (7], 7])

plane is the state-space trajectory.



