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ABSTRACT

A new approach for designing uniform DFT analysis/synthesis
filter-banks, optimized for sub-band coding (SBC) of speech, is
presented. The design is performed by an iterative algorithm, which
consists of solving two sets of linear equations in cach iteration, aiming
to mininflze a spectral-domain distortion function, This function takes
into account the desired charactenistics of analysis/synthesis filter-banks
with decimation, guantization, and interpolation, used in SBC. Using
the new design approach a 16 Kbps SBC is simulated and is found 1o
achieve similar subjective and objective (SNR) performance, as that of a
conventional QMF-based SBC, with only about 40% of the
computations.

1. INTRODUCTION

Sub-band coding is a well known method for digital speech coding
at medium rates (e.g. 16 Kbits/sec). In a sub-band coder (SBC) the
signal is divided into separate bands (typically eight) by using an
analysis filter bank. Usually, each band-signal is quantized by a gain-
adaptive scalar quantizer. The speech is reconstructed from the
quantized band-signals using a synthesis filter bank. A coder of this type
is considered 10 be of "medium complexity”, with its most complex part
being the filter bank (1].

Two common types of filler-banks are the Quadrature Mirror
Filter (QMF) bank {2}, and the unifonn DFT filter bank [2]. The QMF
bank is designed to completely cancel the aliasing due to the decimation
of the band-signals (in the absence of quantization), and it is widely
used in sub-band speech coders. The QMF-based SBC obtains good
qualily at medium bil rates. Iis drawback, however, is iis relatively high
implementation complexity.

On the other hand, the DFT bunk can be implemented etficiently
using the Weighted Qverlap Add (WOLA) scheme (2], in which case it
is of much lower complexity than the QMF bank, for similar band
separation. However, the performance (in terms of subjective quality) of
DFT-based SBC, obtained by known filier design methods, was found
10 be much lower. In a recent work {4}, a new design approach was
presenied, but was not found to sutficicntly improve the subjective
quality.

In this work we present a method for designing filters for the
uniform DFT filter-banks which are optimized for sub-band coding of
speech. This is achieved by minimizing a spectral-domain distortion
function which takes into consideration the following desired
characteristics of an analysis/synthesis filter-bank;

a. Good band-scparation in the analysis stage, in order to enhance
the redundancy removal by providing uncorrelated band-signals
and thereby allowing the design of quantizers which are better
matched to the non-stationary properties of the band-signals (in
particular, adaptation to the gain in each band).

b.  Good band-separation in the synthesis stage, for exploiting the
auditory masking effect [3]. The quantization noise in each
frequency band is "masked” by a stronger band-signal in the same
band, i.e. reducing the loudness at which the noise is perceived. It
is important to minimize the leakage of quantization noise from
one frequency band to other bands (including adjacent bands if
their bandwidth is not narrow {3]), since its masking in other
bands can not be controlled, as it depends on signal inensity in
those bands.
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c. Minimizing aliasing effects (due to the decimation of the band-
signals) in the reconstructed speech signal, and providing a close
approximation o a unity system, i.c. the overall analysis/synthesis
transfer function (in the absence of quantization) should be close
10 a pure delay.

The paper is organized as follows: section 2 presents the distortion
function 1o be minimized; section 3 presents the ilerative design
algonihm used; section 4 presems a design example, and section S the
implementation of a 16 Kbps SBC using the optimized filter banks.
Section 6 presents simulation results with new SBC system and, for
comparison, also with a convential QMF-based SBC.

2. DISTORTION FUNCTION

The basic equivalent structure of a (complex) unitorm DET hilter-
bank is shown in Fig. 1. In the analysis stage, the input signal 2(n) is
demodulated by exp{—j w,n), filtered by the FIR anaiy sis lowpass filter
h(n), and decimated by R:l w produce the M band signals
Xe(m), k=0,1,...,M-1. Idecally, these M complex signals, have a
bandwidth of 2r/AM. In the synthesis stage, the bund signals are
interpolated by the synthesis lowpass filters f(n). modulated by
exp (jwy n), and summed up to produce the output signal (7).

Using well known z-transform expressions for decimated and
interpolated signals, the z-transform of the output signul, when no
quantization is applied, is given by:
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The mean squared error (MSE) relative 1o unity transmission, i.
delay of n, samples is given by:
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As shown in Fig. 2, the ideal frequency responses of the filters, are:
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where § denotes "don’t care” regions. The cnergy of the side-lobes
(stop band) of the analysis and synthesis filters is:
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The distortion function we introduce is therefore given by the following
weighted sum:

D =wuEy +E, +WyEy +w/Ey ©6)

where the weifht factors w,;,w,, w; are non-negative constants. Using
Parseval’s theorem D can be rcpresented as a posilive-semi-definite
(PSD) quadratic form, in terms of the analysis and synthesis filter
coefficients;

D=1- 2qu + 7 Qf + terms which are independent of [

~ 7
=1 =2h"§+ h7Qh + terms which are independent of h ¢

where h and f are vectors with elements obtained from consecutive
terms of h(n) and f(n), respectively. The derivaton of (7) and the
expressions for the PSD matrices Q, Qand the vectors q, q are given in
the Appendix.

3. ITERATIVE ALGORITHM FOR OPTIMAL FILTER-BANK
DESIGN

When the analysis filler A(n) is given, the synthesis filter f (n) is
computed by minimizing D, and vice-versa. Minimization of the
corresponding PSD quadratic forms in (7) with respect to f (n) or h(n),
gives the following linear equations for solving for the optimal filters,
respectively:

Qrop|=q v Qhoplzq ®)

Assuming w, > 0 and w, > 0 (since we wish to limit the frequency
magnitude response in the stop-band, both for h(n) and f(n)),_and
following the derivation in the Appendix, we conclude that Q and Qare
PD matrices, yielding therefore unique solutions to (8).

If the given FIR filier is symmetric (i.e. linear phase), the
corresponding computed filter from (8) is also symmetric. In this case,
as shown in the Appendix, the dimension of the equation set can be
reduced from LxL to (L72)x(L/2), where L is the length of the
compuied filter.

The combined design of a pair of optimal analysis and synthesis
filters is performed by an iterative algorithm, similar to [4], which
converges to a Iocal minimum of D, as follows:

a. Initialization: Let ? be an initial synthesis filter, €>0 a
threshold constant, k=1, D ©=co.
b.  Given %, compute h® from (8): Qh%*)=4q.

Given h™®), compute f) from (8): Qf*)=q.

Compute the distortion D using (7).

If(D¥N-p®Np®) < ¢, then goto step e.

Otherwise, k « k+I, and retum to step b.

e.  Normalize h® and f*) (as explaincd in the sequel). Stop,

By increasing the weights w,;, wy, wy in the distortion function
defined in (6), the amplitude of the windows obtained by minimizing D,
decreases. In order to restore the amplitude of the synthesised signal,
without affecting the output SNR, f (n) is scaled by a factor ¢,, which
minimizes the MSE relative to unity transmission:
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An expression for the factor ¢,, in terms of the filter coefficients, is
given in the Appendix. :

The iterative algorithm consists of computing the analysis and
synthesis filters altemately, minimizing the same distortion function.
Hence, D is monotonically decreasing from iteration to iteration. The
algorithm converges to a local minimum of D, which depends on the
initial filter chosen.

4. DESIGN EXAMPLE

In this section, we present a filter design example, for a sub-band
coder with M=16 complex-bands.

To achieve maximum coding efficiency, it is desirable to decimate
the band-signals by the critical ratio R=M. However, the designed
filters for the critical ratio, were not found to have the desired
characteristics mentioned in section I, unless they are of very long
duration. Decreasing slightly the decimation ratio, using R=(M-1)=15,
enables the design of filters which result in high performance SBC, but
still of quite Jower complexity than a conventional QMF coder of
similar performance.

The impulse and frequency responses of the optimal filters, with
M=16 bands, decimation ratio R=13, and length of 256 taps each, arc
shown in Fig. 3. The weight factors were chosen to be w,; =10, w,=10,
w,=20, and the resulling filters provide good band-separation and a
high performance SBC. The transfer function of the system in the
above example (obtained from (1) by excluding the aliasing
components) is given by:
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and its magnitude is plotied in Fig. 4.

5. SBC IMPLEMENTATION

The SBC consists of the above analysis and synthesis filter banks,
and adaptive quantizers with dynamic bit allocation.

The filter-banks are implemented efficiently, using the WOLA
scheme [2]. The DFT is performed by the Decimation-In-Time FFT
algorithm (5). This algorithm, when used for transforming real
sequences, has many redundancies. The FFT of a real sequence of
length 16, requires only 12 real multiplies, 62 real adds, and the storage
of only 3 constants (cosr/4, cosn/8, sinx/8) (6). Similarly, the IDFT is
performed by the Decimation-In-Frequency FFT algorithm (6).

The M complex signals are uniguely rcpresented by the following
M real signals:

Y,(m)=X,(x), Yym) =X,,4m).
Yu_(m)=ReX,(m), Yo (ny=ImX,(m),k=12,.M/2-]

The real signals Y;(m),i=0,...,.M —1, are quantized independenily, using
forward gain-adaptive quantizers [1}. Gain adaptation in the i -th band is
based on the estimated and quantized variance 6,? of the signal Y;(m),
which are updated every 16 sampies of ¥;(m) and are transmitted as
side-information. The corresponding 16 samples of Y;(m), are quantized
by a uniform ggamizer (1), optimized for a zero-mean Gaussian PDF
with variance ;.

Based on the estimated variances 6,-2. the bit allocation is
computed to minimize the MSE:
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where X and ¥ are the_quantized versions of X and Y. The double
weight of the errors in Y; ,i=1,.. . -2, is accounted for by multiplying
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the estimated variances 6,»2,1':1,...,1&1—2. by 2, before computing the
allocation. A procedure for bit allocation is given in [7]. The allocation
is also updated every N=16-samples of each of Y;(m),i=0,1,... .M —1.

The computation rale required for implementing the analysis
filter-bank is as follows: L multiplies, L-M adds and an FFT of length
M for the analysis stage for producing M complex samples [ 2, Fig.7.19}
where L is the filter length. The same number of operations is required
for the synthesis stage[2]. For a decimation ratio of R=15, the
implementation of both the analysis and synthesis filter-banks, requires
36 multiplies and 40 adds per input sample.

6. SlMU.LATI.ON RESULTS

An SBC which utilizes the above optimized filters, and an SBC
which is based on an 8-band QMF-bank, were simulated for a
transmission rate of 16 Kbits/sec. The implementation of the QMF-bank
requires 96 multiplies and 102 adds per input sample (using 32-tap
filters). The DFT-based coder and the QMF-based coder were found to
have similar subjective performance. Both coders yicld high quality
synthesized speech, degraded only by very slight hoarsencss. The
objective performance of the QMF-based coder is slightly higher:
SNR=19.8 dB for the QMF SBC, as compared to 18.9 dB for the DFT-
based coder. An attempt to rcduce the QMF bank complexity to 48
multiplies per input sample, using shorter filters, caused noticeable
degradation in the synthesized speech quality.

Another filter-bank structure is the generalized parallel QMF bank
{8, [9], (10]. The filter-bank described in (8] has 8 bands, and requires
about 75% of the number of multiplies and 150% of the additions as
compared with the above uniform DFT filter-bank. However, in that
filter-bank (8], adjacent bands are not well separated, and the coder
using this filter-bank can be expected (o have similar performance 1o the
above DFT-based coder, only if longer filiers will be used (thus
increasing its complexity). The filter bank presented in [9] splits the
signal into 16 bands (also not too well separaled), and requires 42
multiplies and 82 adds per input sample. Both papers, [8] and [9], do not
present comparisons o QMF-based or other coders. The SBC presented
in {10}, includes S-band filter-bank, using longer filters (60 taps) to
reduce the interband aliasing.

7. SUMMARY

A new approach for designing FIR filters for uniform DFT filter-
banks, eptimized for sub-band coding of speech was presented. A
16 Kbps SBC which utilizes the optimized filters was simulated and
was found to achieve similar subjective performance as that of a QMF-
based SBC, butl effecting about 60% reduction in computations as
compared to the QMF bank. :

APPENDIX

1. Aliasing Distortion;
From (2), using Parseval’s theorem:

R-1 M-
Eu=-as STV T (SOWE )« (hmWEW )12 (13
MR* 1'% i=0

Using the identity:

M-1 M-1 M, n=0
h Wtf= o efmniM _ pg - 8n modM)={ (14)
k=0 k=0 0, n=0
the fol'lo'wing expression for E,; is obtained:
1
Ey=—2 333 (s)h(n-s)h(n-t)f(t)-
RE 0N 13)

- [R 8((s—t)mod R)-1] &n mod M)

For simplicity we choose the filiers & (n) and f (n) 0 be of equal length

L1

3

L, where L is an integer multiple of the transform size M. (15) can then
be rearranged in either of the following iwo PSD quadratic forms:

E, =1 Quf=hn"Q,h

f=fO.f(D),. .f@L-D)

h=[h(),hQ),. h L)

Qu(s.t)= 7;—2— ;/l (nM =5 dh (hM )[R 8((s ~t) mod R }—1 ](16)
0<s,t<L-]

Qui(st) = ;lz“ 3/ (nM=5) f (nM =1 (R 8((5 1) mod R)—1] .

<5, <L

where Q,; and Q,, are matrices of dimension LxL . Since £, 2 0, both
symmeltric matrices are PSD.

2. MSE relative to unity transmission:

If A (n) and f (n) are linear phase filters (both of length L), the delay of
the analysis-synthesised system is n,=L samples. Using Parscval’s
theorem and identity (14), we get from (3

E,=12q+'Q,f=1-2n"qg+h"Q, h
q -

q= % 8n, mod M)A (,), h(ny~1), ... (n,~L+1)]T

= = 81, 0 M (2,13, £ (1, =2) ..of (g -L)I"

£

(17)
1
Q, )= F?h(mw—s)h(n{tl—l), 0Ss,tSL-1

6,,(s,l)=;]52f(mw—x)f(nM—:). 1<s .t <L

The symmetric matrices Q, and Q,, can be shown to be PSD.
3. Side-Lobe Energy:
From (5), using Parseval’s theorem:
E,=hTQuh; E/ =fQf
Qs =qus~151<su SLigu(n)=F" {04(e’®) } (18)
Q(s.)=qr(s~1%0<su SL-1Lgr(n)=F"(Q;(e/Y}

Since h(n) and f (n) are FIR filiers, E,, E; >0, so both symmetric
matrices Q, and Q, are_PD. Combining (6),(16) and (18) we gel
equation (7), where Q and Qare given by:

Q=wyQu +Q, +w,Q,

- — — 19
Q=w, 0y +Qy +wa Qs 9

4. Case of Symmetric Filters: :
If the given filter is symmetric, i.e. h(r)=h(L+1-t), 1=1,..L, or
fU)=f{L-1~t),1=0,...L~1, then the matrices Q and Qin (19) satisfy:

QG .0)=Q(L-1=s ,L-1-¢), s5,:=0,1,. . .L~1

Qs . 1) =QL+1=s ,L+1~t), s,0=1,2,..L (20

Following (20), we conclude that the computed filter obtained via (8) is
also symmetric. Equation (8) can therefore be reduced to compute half
the filter coefficients:

Pf=p, Ph=p

P@E.0)=Q¢ . 0)+Q(s . L~1-t), s,1=0,.,L/12-1

PG, 0)=Q,0)+Q , L+1-1), s,t=1,..L/2
W=, A AL, £=[f©),f()..f L2-D
P=[9(0).q(Duq/2-DIT, p=[4(1).§(Q)... 4L/

2n



5. Expression for cy (eqn. (9)):

Using Parseval’s theorem and (14), E,, (¢ ) can be expressed as:

E, (c)=1-2cfTq+c7Q,f (22)
Minimizing E,, (¢ ) results in:

¢ =('Q, N1 (g (23)
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Fig.1  The uniform DFT filier-bank
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