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Abstrace
The paper presents a studv of digital Wiener filters
desipned for decomposition of multiechoed signals.
Pesipn methods for two important situations: input
sipnals immersed in noise and unknown wavelet shape,
are further develaped.

For noisy input signals, care must he taken in desipn-
ing the Filter in order to avoid excessive mitput nolse
which will mast the destred signal. 1t is shown that
hy varying the nnise weiphting factor in the eost
fuaction a trade-off hetween sipnal resolution and :
noise vrror i- An optimal weinhting factor
for many practical situations is derived and verified
in simulations. 1t is also shown that output noise

can he eontrolled by varying the width of the output

ponl e,

abtained.

Ml paper alse considers the important case of an uu-
known wavelet shape. A known approach for this situa-
tion is extended to enable the decompnsition by Wiener
filters of certain classes of sipnals.

Introduction

In many physical situatinns, wve encounter s.gnals com-
posid of a basie wavelet and renlicas of this wavelet,
imaersed in noisc.  Such wvaveforms are common in radar,
sonar, seismology, acoustic reeordine,
I't is often required to deternine the number, ampli-
tude and relative oo nrance of various echoes,

ln a comparative study of existing techniques of sipnai
decompesition [1) we have found that in sltuations of
paor SH' oand unknoon wavelet shape the Wiener decom-
position filter is particularly suitable. The digital
diener decompusition filter shapes the hasic wavelet,

s _, into a narrov output pulse - g . The response of
the filter to an input sipnal composed of the basic
wavelat and overlapping echoes, x,_, ls therefore a
series of narrow non-overlapping pulses:
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i=1 !

k
(1b) o= g F ) RLep.

i =T
o=l =3

st- Rasic Wavalet
a;~ amplitude of i'th eclo
Ti‘ time of occurance of 1'th echo

k - number of echoes
X - composite input signal
B~ desired output

¥, - output signal

hrain waves, etc.

Fig. 1 demonstrates the decomposition of the signal
appearing in Fig. lb, which is an echoed version of
the wavelet in Fig. la. The outputs of three Wiener
filters, desipgned for desired outputs of unit impulse
and fGaussian pulses with o = 2,4 and 4.5 are shown in
Fip. lc. The narrow pulses of the output provide the
information about the times of arrival and amplitudes
of the echoes.
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ceral pescription of Wiener Shaplng Filters

The Wiener shaping filter Is a linear, time-invariant,
finite impulse response Eilter (FIN) designed to shape
the basle input wavelet into a narrow pulse, usinp the
least mean square error approach. For an input signal
composed of a wavelet, s_ and noise, u_, the mean
square error between the actual output and the de-
sired output is piven hy:

, HN-2 N-1
() I = {x * -p } = (g - h +s )2 + 8{\:2}
£ e TR t=0 t L=0 Tp Te-p t

v - input sipnal; x = &8
t k B e - fe

u, - input stationary noise, uncorrelated with B,

+ ut.t X 5 L—d L)

I

linear time invariant FIR filter,t = 0.1,.....8-1.
= g *

v output noise: Ut - u ht

The Viener shaping filter minimizes the error I 12].

In [3] it is suppested to peneralize the cost function
{(2) hv weiphting 1its twn terms

(3a) 1 =FE + w-H{vz}
[ t

wier e

THN-2 Nii ,
(3v) E_.= § (.- ) hyes })
B e t ;on P Te-R

F is the sinnal error and w is a positive weighting
factor, which will he discussed in the sequel.

The Wiener shapinp filter coefficients are derived
Ww minimization of (3). For real signals the mini-
mization leads to the following set of equations [3]:

L4 ! I
Ro ll P! {H—I ho ¢gﬁ (0
Gay |®t %a ™ Re-2 [1M]=]%= @
. . 4 {N=1)
R S Y : e !

t4nh) R, = ¢“(1} +u-¢uu(iJ

ith Ty and % heinp, the autocorrelation functions
of thn'?npur wavelet and noise, respectively, and ¢
the cross-correlation between the wavelet and the es
desired output.

In the noiscless case there are three design parameters
which mav reduce the error energy of the Wiener filter
(o' tained from (&) with ¢ = 0 Y(a) Filter's memory
Jduration (its increase asympototically reduces .

() Nesired output delay (optimal delay depends on
wavelet properties). (c) hesired output shape. In
decanposition problems it is accepted to use the fau-
ig the deslired output:

2
ff?-1.a)_ﬁ's-exp{LE:L%-}, 1-21 < 1 < 1+20
5 20° -

i . else

sian puise

It can be shown [4],
is chosen to satisfy:

The degivn poraneter is thus o
{1]. thar if o

(h o < .25 T min

vhere T omin is the time interval hetween the two pulses,
then tne twe pulses can be satisfactorily distinguisled.

The design conslilerations for these parameters iu Lhe
noiseless case are described elsewhere ( [1], (3] ).

Decomposition of Signals [nmersed in Noise

Usually the composite signal includes noise which in=
terferes in the detection of the echoes as well as in-
troduces errors in the estimation of thelr amplitudes
and delays. This sltuatlon is hardly treated in the
literature except for the "classical' approach hased
on (2) (w=1).

For high SHNR or for unknown noise statistics the out-
put noise can be reduced by increasing the desired
output's width o. (SNR is deflned as the ratio be-
tween maximal sipnal amplitude and r.m,s. value of the
nolse). The filter coefficients are then solved from
(4) with w = 0.

Ag a measure for the output noise we may use the sum of
squares of the filter's coefficients. For white and
uncorrelated input noise and high resolution filter,
SNRout is inversely proportional to this measure:

K-1

2.~U.5
- = SNR - i
v qNRﬂut in ( E lij
i=0
Increasing the output pulse width increases SRR but

decreases resnlution. It is possible to define M
measure of performance as a combination of resolution
and output noise measure and to iook for o which opti-
mizes it [4]. However, in most of the simulations
carried out in [1] we found that it is both effective
and convenient ton choose the pulse width according to
g = 0.25-T min. Fig. 2 demonstrates the effect of
white Gausian noise on the Wienmer filter output. Noise
is added to the input described in Fig. 1b to form the
noisy fnput (Fig. 2a). The actual Wiener filter's
outputs are presented in Fig. Zh-Fig. 2d. Wiener fil
ters are deslpgned for desired vuljnts of a unit sample
(Fig. 2b) and Gausian pulses with o = 2.4 (Fig. 2e)
and ¢ = 4.5 (Fip. 2d). The compromise between resolu-
tion and output nolse achieved by o = 0,25+T mire 2.4
is self evident.
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Iuproving the bDecomposition of
Hoisy Sipnals by Weiphting Uutput Noise

When tie Input nolise statistics are huown it is possi-
ble to Improve Wiener filter's performance by a care-
ful selection of v in (3a), following the selection of
o as described ahove,

Tue Lifect of w on Iilter Coefficients and Output.

The first term of the ecost function I in (3a) ie the
error between the signal output - s *h  and the desir-
ed output., The second term is the wniéhted ontrut
notse pnwer.  Increasing w increases the weight of the
output noise. For stationary white noise (3a) hecomes:

N-1
. 2 2
() R Is +w -h{ull‘ z h i
I=0

brom (8) 1t appears tiat the increase of w will de-
crease the sum of squares ofﬁths coefficients. Fig.3
presents the dependence of Ly ©“ on w as computed after
fidnlamizing (3a) The basic wavelet was recorded in an
Impact test of an iron rod. The input notlse is white
and Gaasian (ac 5HR =19), The desired outputs are
unit impulse and GauSian pulses with o = 2.4, 4.5 . The
three araphs in Fig., 3 show clearly that I'%z decreases
as w Increases. It then can be shown [1] that the sig-
nal error energy Eq increases with w.

Thus, increasing w reduces output noise at the EXpense
of preater error between sipnal output and the desired
oukput,
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Optimal Selection of w.

We shall definc the optimal w as the one which min.mizes

I1.-1
O = T (e
£=0

2

I* - error energy at the output of the decomposition
filter.

L - output duration
Yo~ actual Wiener filter output
g: - desired output for the specific input (wavelet

and echoes).

The error function (9) can he developed [1] into:

L.-1
© 2 2
1 * o= * (5 *h - v ©)
(1Ma) I ! (Pt (ht ht gt)] + 1 v}
t=i)
Where:
K
- o
(190) e 5: + 7 B
i=1

Pt is the reflection series of the Input sipnal as de-
fined in (10 b).

The optimal selection of w results in a Wiener filter
calculated from (4) which minimizes I* in (l0a). It

is difficult to derive a general expression for the op-
timal w. However, in most practical situations we may
assume that (st*nt—gt} is narrower than the time delay

between twn echoes, because g 1s narrower than the
time delay. linder this assumption (l0a) becomes:

K 3
" 2 2 “J'.. 2

(11) 1% = (14] *1)‘{EB+L-(]+E ui) L{vt}}
i=1 i=1

According to its definition, the Wiener filter calculat-
ed from (4) minimizes the cost function I of (3a), f.e.:

(12) 1= e-(E + w-Ef"’f}}

¢ - arbitrarv constant

lience, from (11) and (12) we find that the optimal se-
lection of w is:

K
, -1
= Le(l+ ] ap)

i=]

(13) Vape

Simulations carried out in [1] confirm that the optimal
w calculated from (13) is a good starting point even

in situations where our assumption is no longer valld.
Fig. 4 shows the output of Wiener filters designed for
various values of w (0=2.4), for the input signal in
Fig. 4a. Calculation of the error I* defined in (9
shows the optimal w is approximately 8 as calculated in
this cas2 from (13).
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Wiener pucomposition Filters for Unknown Wavelets

Usir; Wiener decomposition filters requires information
on the wavelet shape. This information is not always
availuble. 1In order to deslgn the Wiener filter from
f4) w2 have to know be and 4 (We shall treat in
this section the nnise;955 cage only, so that ¢
Sometimes it is possible to estimate this correfition
for unknown wavelets.

ketination of Wavelet's Autocorrelation

In —ertela situations it is possible to use the auto-
correlation of the input signal in a limited time in-
it can Le shown that:

iy % &
<) pp(j)

torval .

14) 6 (3) = &

G/z/5

(1)=0).

Pe is the reflection series of input signal, as defined
in (l0a).

In the following two cases such an approximation is
possible.

(a) The reflection series p is uncorrelated. In this
case [5) we have:

(15) ‘xx(‘” = ¢p(U)°¢Bs(J)

{b) It is sufflecient that:

(16) "xxul"’ap(”)'*ss(-” ’ =0, ..N-1

where N - is the filter's memory duration.

The approximation (16) depends on the functians¢

and ¢ arit Specifically, (16) is true if:
. >y . b j= T
(17) ¢ PP{U) ¢ss())> ! ﬂ-y(tk) ¢55(j tk} j=u,1,
where t, are the values nf t for vhich ¢ (t) is not
zaro. B
»condition (17) fmplies that the filter's menory

wuration, N, is shorter than the minimal delay be-
tween the echies, 1 and that ‘qH is relatively nar-
rov. =

min

Estimation of the Cross Correlation Letween tie Wave-
let and the Desired Output- )

Bs

For unknewn wave]ets-.‘-nq can be calculated in two ways:
(a) By arbitratily selecting ¢'5 we ran coatrol the
desired output's width wiich is"Satisfactory for de-
composition problems [u].

(b) The cross correclation L may sometimes be used
instead of ¢ _. This approximation holds Lf only tne
basic wavelet i prescent in the time interval between
zero and tue end of the desired output (for vausian
output pulse (5) the interval is [0, + 2u]).

Figure 5a describes a multiechoced signal vith an un-
kaown basic wavelet. Fip. 5h presents the signal de-
composition by a Wicner filter wuere ¢ gx nd $xy are
used in place oL ¢y and ¢gg respectively.  The Wiener
filter ocutput proves that tlhe ahove mentioned condi=-
tions are fulfilled in this case.

Conclusions

We have developed furtlier design metihnds for signal
decomposition by Wiener filters for noisy inputs and
unknown wavelet shape.

It is possible to reduce the output noise by varying
the width of the desired output pulse. However, when
noise statistics is known, we have shown how to im-
prove the Wiener filter performance by optimal selecc-
tion of the noise weighting factor in the cost function.
For the noisy situations the Wiener filter thus design=~
ed is particularly suitable since good resolution can
be achieved by relatively short memory duration.

The extension of Wiener filters for noisy inputs and
unknown wavelet shape is still open for further re-
search. ~
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