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ABSTRACT

This work introduces a new binary image representation
method - the Morphological Multi-Structuring-Element
Skeleton (MSES), which is a generalization of the well-
known Morphological Skeleton. Each point in the MSES
representation is related to a combination of a finite
number of pre-defined structuring-elements, in contrast to
Regular-Skeleton points, which are related to a single scaled
structuring-element. Its definition, properties and applica-
tions for image processing and coding are presented in this
paper for the case of 2 structuring-elements.

I. INTRODUCTION

An increasing interest in the Morphological Skeleton
representation has been observed recently, particularly for
binary images [1]-[10]. The reason is the Skeleton’s abil-
ity to extract relevant geometrical information about the
shapes of objects in the image (considered by it as math-
ematical sets). This is done by decomposing the objects
into the set-union of simpler shapes. Those shapes are
maximal elements [2] taken from a pre-defined family, in
which every element is a scaled version of one single basic
element (called structuring-element). Mazimal elements in
an image object are defined in [1, 2] as the elements con-
tained in the object in such a way that no bigger element
contains it and is contained in the object.

The size of each maximal element, also called the order
of the skeleton point related to it, has great significance.
A small maximal element, for instance, may be seen as
describing image detail or noise, whereas a large maximal
element may be considered as a fundamental component
of the image. Thus, image filtering can be done by dis-
carding low-order skeleton points, and image analysis can
be performed based on the high-order skeleton points.

On the other hand, the significance of the size is greatly
dependent on the particular structuring-element chosen for
the family generation; different structuring-elements may
give different interpretations about the image parts. For
instance, a square-like structuring-element may consider
as noise what a diamond-like structuring-element might
consider the corner of a fundamental component. Differ-
ent filtering results and different shape analyses will be
obtained for different structuring-elements.

The question of "which structuring-element to choose?”
stimulated a great number of research works and different
skeleton structures [2, 4, 6, 7, 8, 10].

The Morphological Multi-Structuring-Element Skele-
ton, proposed in this paper, does not calculate the op-
timum structuring-element, but it picks up, from a given
finite set of shapes, the most appropriate combination of
them for each of the different parts of the image. It does so
by generating a multi-parameter family of shapes, instead
of a 1-parameter family as in the Morphological Skeleton,
and picking maximal elements from this family. The pa-
rameters of the family are the sizes of each of the pre-
defined structuring-elements.

II. The Multi-Structuring-Element Skeleton (MSES)

A. The Regular Morphological Skeleton

Given a basic structuring-element B, a discrete family
{A(n)}2Z¢ of elements in Z2, n integer, is generated in the
following way:

4(0) {(0,0)},
A(n+1) = A(n)®B. (1)

where @ means Morphological Dilation. (Definition of the
morphological operations can be found in [1, 2]). It is easy
to see that

A(n):B@B@...@B:nB. (2)
~— —
n times

An example of such a family is shown in Fig. 1(a), where
B is a unit square. The family {A(n)} is the set of all
discrete squares.

The Morphological Skeleton, SK(X), of a binary image
X (in relation to the family {A(n)}) is the set-union of
its n-th order skeleton subsets which are defined, for the
discrete case (images in Z?), by:

Sn(X) =Y, - ¥, 0B, (3)

where

Y. = X 6 A(n). 4)
with © denoting Morphological Erosion; o — Morphological
Opening and the minus sign — set-subtraction [2].

Fig. 2(a) shows a shape (X)) and its Skeleton (SK(X)),
based on the discrete 1l-parameter family shown in
Fig. 1(a).

The set S.(X) @ A(n) is the union of all the mazimal
elements of size n of the image X. It is easy to show that

U 5.(X) @ A(n) = X o A(k), (5)

n=k




13.

function [med im,err_im] = med(im);
sz = size(im);

a_im = filter2([0 0;1 0],im);
b_im = filter2([0 1;0 0],im);
abc_im = filter2([-1 1;1 0],im);
comb_im = zeros(sz(1),sz(2),3);
comb_im(:,:,1)=a im;
comb_im(:,:;,2) =b_im;
comb_im(:,:,3) = abc_im;

med _im = median(comb_im,3);

err im =im - med im;

example:

error image
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Figure 1: (a) A 1l-paramecter (size) family of shapes
generated by the Regular Skeleton. (b) A 2-parameter
family, generated by the MSES.

which means that morphological filtering can be done by
simply discarding small-order skeleton subsets. Error-free
reconstruction of the image X can be obtained from (5)
by setting k=0.

B. Definition of the MSES

The MSES may be defined for any finite number of
structuring-elements. For simplicity, we define it in this
paper for the case of 2 structuring-elements only; the gen-
eralization is simple.

Given 2 structuring-elements, B; and B,, they generate
a family {A(n, m)}2>m=o of elements, n,m integers, in the
following way:

A(n,m) =nB: & mB. (6)
The above family has the following property:
A(n,m)=A(n—-1,m)® By = A(n,m —1)® Bz. (7)

for n,m > 0.

Fig. 1(b) shows an example of such a family, for the case
that B, is a vertical unit line and B; is an horizontal unit
line. The family {A(n,m)} is the set of all the discrete
rectangles. Notice that the 1-parameter family shown in
Fig. 1(a) is contained in the 2-parameter family just de-
fined.

We define the Morphological Multi-Structuring-Element
Skeleton, MSES(X), for the above family, as the union
MSES(X) =", U _y Sam(X), where

m=

Snm(X)=Yom — [(YamoB1)U (Yamo B2)], (8)

Yo,m = X © A(n,m). (9)

MSES(X)is the set of center points of the maximal ele-
mentsin X from {A(n,m)}. In other words, the MSES au-
tomatically matches the different regions of the image with
each of the structuring-elements and decides which one, or
which combination of them, best represents it. Each of its
points is related to 2 parameters; the first one (n) is as-
sociated with the size of the first structuring-element and
the second one (m) with the size of the second structuring-
element.

X SK(X MSES(X)

(2) (b)

Figure 2: (a) A shape X and its Skeleton SK(X),
related to the family shown in Fig.1(a). (b) Same
shape X and its MSES, related to the family shown in
Fig.1(b).

Fig. 2(b) shows MSES(X) (same shape X as in
Fig. 2(a)), based on the discrete 2-parameter family shown
in Fig. 1(b). It contains only two points, because X is com-
posed of only 2 rectangles. The point related to the large
rectangle belongs to Ss 3(X) and the other one to 516(X).
Every other subset of MSES(X) is empty.

An equation similar to (5) is obtained for the MSES:

co o

U U Snn(X) ® A(n,m) = X o A(j, k). (10)

n=j m=k

The original image can be fully reconstructed from the
collection {Snm(X)} if we set (j,k) = (0,0) in equa-
tion (10).

Also from (10), one obtains that:

lJ Sem(X)@ A(n,m) = (X oB1)U(X 0Bs), (11)
(mm)#(0,0)

which is the result of discarding the lowest-order skeleton
subset (S0,0{X)).

The Regular Morphological Skeleton is a particular case
of the MSES. It is obtained by choosing By = B, and any
B: so that X © B2 = 0. Such choices yield Sn,m(X) =0
for all m > 1, and Sa0(X) = Sa(X).

C. The Minimal MSES

The Regular Skeleton is normally a redundant represen-
tation [2, 5, 10]. l.e., one can remove some skeleton points
and still recover the original image with no error. Mo-
tivated by this observation, some authors have proposed
algorithms [2, 5] for finding a Minimal Skeleton which is
defined in [2] as a subset of the skeleton points which is
sufficient for reconstructing the whole image, but not so if
any of its points is removed. A Minimal Skeleton always
exists and may be not unique.

Like the Regular Skeleton, also the MSES is a redundant
representation, and a Minimal MSES may be defined in
the same way as the Minimal Skeleton above. The same
algorithms for finding Minimal Regular Skeletons can be
used for finding a Minimal MSES, which fully represents
the original image and contains no redundant points. Its
existence is also assured, and it is usually not unique, too.
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Figure 3: Shape Classification via Minimal MSES: (a)
An image composed of rectangular features. (b) Fea-
tures for which R > 3. (c) Features for which R < 1/3.

III. Characteristics and Applications
of the MSES

A. Size Ratio and Shape Classification

Let us consider a Minimal MSES representation of a
binary image composed by several objects. By considering
the relation between the parameters n and m associated
to the Minimal MSES points, one can decide whether the
image objects, or their parts, are similar to B;, Ba, or
none of them.

Let the size ratio of an MSES point be defined as R =
nfm. If R is greater or equal to a given Ry > 1, then
the maximal element corresponding to the MSES point is
similar to By. If R is smaller or equal to 1/Ry, then the
maximal element is similar to B2. Otherwise, the element
doesn’t look like any of the 2 structuring-elements.

Fig. 3(a) shows an image X composed of several rect-
angular features. A Minimal MSES representation of X,
with the rectangular family defined in the last section, was
calculated. Fig. 3(b) shows maximal elements correspond-
ing to Minimal MSES points for which R > 3. Those
features are very similar to B; (vertical line). Fig. 3(c)
shows maximal elements corresponding to Minimal MSES
points for which R < 1/3. Those features are very similar
to B (horizontal line).

B. Partial Reconstruction and Image Filtering

Discarding lower-order Regular Skeleton subsets in the
reconstruction process produces smoothed versions of the
original image, as shown in equation (5). Equations (10)
and (11), for the MSES, provide a greater variety of options
for filtering the original image.

(b) (c)

Figure 4: Image Filtering: (a) Noisy image. (b)
Filtered reconstruction from the Regular Skeleton
(n > 1). (c) Filtered reconstruction from the MSES
(n+m > 2).

One can see that discarding So,0(X) alone (equation
(11)) produces the same result as the union of the open-
ings by the 2 structuring-elements, which is a more selec-
tive filter than the opening by a single structuring-element.
Generally, for an MSES with N structuring-elements (in-
stead of 2), the removal of the lower MSES subset gives
the union of the openings by each of the N structuring-
elements, which was shown to have good noise cleaning
properties in [9].

Many other morphological filters can be obtained by
removing different combinations of lower-order subsets.
Fig. 4 shows the result of removing the MSES subsets with
n-+m < 2,in contrast to the result of removing the Regular
Skeleton subsets with n < 1.

All the morphological filters that may be obtained re-
moving Regular Skeleton subsets may also be obtained
through the MSES, by removing the appropriate subsets.

C. Compact representation and Error-Free Image Cod-
ing

If B = pB1 @ ¢B:, for any integers p,g > 0, then the
l-parameter family generated by B is contained in the 2-
parameter family generated by By and B». In this case, the
number of representation points in a Minimal MSES (us-
ing By and B:) is never greater than the number of points
in a Minimal Regular Skeleton (using B). If we take as an
example the families from Fig. 1, and an image composed
only by squares, and not by rectangles, then its two skele-
ton representations are identical, with the same number
of points. Normally, though, an image is composed of ele-
ments from the 2-parameter family that are not contained




in the 1-parameter family, and hence its Minimal MSES
has fewer points than its Minimal Regular Skeleton.

Simulation tests for error-free coding of Minimal MSES
and Minimal Regular Skeleton representations were per-
formed. The binary images used for the tests are the Most
Significant Bit-Plane of some grayscale images. The re-
sults are presented in Table 1, both in terms of number
of representation points, and bits/pixel of the compressed
image. The compression method used is Huffman Coding
of the Runlengths of the ”0” sequences. It shows that the
Minimal MSES has fewer points than the Minimal Regular
Skeleton (SK), and also that it achieves better compression
rates.

Picture # points Bits/Pixel

(MSB) SK | MSES | Savings | SK | MSES
Lena 12607 8017 36% 0.32 0.30
House 1079 639 41% 0.12 0.11

Table 1

D. Pattern Spectrum and Image Analysis

The Regular Skeleton is closely related to a morpho-
logical pattern spectrum [10]. The pattern spectrum con-
veys geometrical information which can be further ana-
lyzed and processed. The MSES, because of its multi-
parameter structure, may be seen as closely related to a
multi-dimensional pattern spectrum, which contains the 1-
dimensional pattern spectrum and conveys more and finer
details for analysis.

The discrete morphological pattern spectrum is defined
in [10] as:

PSB(X)=#[XonB—-Xo(n+1)B].

where #(-) denotes finite set cardinality. The same type of
generalization used to generate the 2-element MSES may
be used to define a 2-dimensional pattern spectrum:

PSBLP (XY= #{X o (nB: @ mB:)—
(X e} [('n.+ l)Bl [4}) mBz]) U (X o [nBl 4] (m -+ l)Bz])}

IV. Generalizations
of the Minimal MSES

If the Regular Skeleton has N subsets, than the MSES
with 2 structuring-elements has approximately N2 subsets.
This causes the MSES to demand much more computa-
tion time than the Regular Skeleton. On the other hand,
a Modified Skeleton with a Geometrical-Step family of ele-
ments A(n) = (2™ —1)B [4, 7, 8] gives a skeleton with only
about log, N subsets. It was shown in [4] that not only is
the Modified Skeleton faster to compute than the Regular
Skeleton, it is also more compact in terms of bit-rate. A
Modified MSES, with A(n,m) = (2" —1)B; & (2™ — 1)Bz,
may also be defined as in the case of the Regular Skele-
ton, and will produce (log, N)* skeleton subsets, which is
usually smaller than N.

Table 2 shows the results of an error-free coding simu-
lation using a Minimal Modified Regular Skeleton and a
Minimal Modified MSES.

| Picture # points Bits/Pixel

; (MSB) | Modif. | Modif. Modif. | Modif.
’ SK MSES | Sav. SK MSES
Lena 13231 8929 | 33% 0.31 0.27
House 1261 703 44% 0.12 0.10

Table 2

The Modified Skeleton and the Regular Skeleton itself
are particular cases of the Generalized-step Morphologi-
cal Skeleton defined in [7]. The Generalized-step Mor-
phological Skeleton family of elements is generated not
from a single structuring-element but from a series of el-
ements {B(n)}, such that A(n) = A(n — 1) ® B(n). A
Generalized-step MSES may be defined in the same sim-
ple way — its element-family is generated from the families
{B1(n)} and {Bz(m)} by A(n,m) = A(n—1,m)®Bi(n) =
A(n,m—1)® Bz(m). The Generalized-step MSES is a fur-
ther generalization of the Generalized-step Morphological
Skeleton, since the latter one is a particular case of it.

The MSES can be generalized also to grayscale images
in the same way it has been done for the Regular Skeleton

3]
V. Conclusions

A new image representation was presented which gen-
eralizes the Morphological Skeleton in such a way that it
represents image details in a more descriptive and efficient
way. In applications such as image coding, filtering and
analysis, it was demonstrated that the new skeleton has
an advantage over the regular one.
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