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ABSTRACT

This work presents a novel morphological representa-
tion structure - the Two-Sided Morphological Skeleton.
It represents a shape not only by the centers of “positive
elements” (foreground features), as the ordinary Mor-
phological Skeleton does, but also by the centers of “neg-
ative elements” (background features, such as holes).
Le., it represents an image by elements from both sides
of the Pattern Spectrum.

The Two-Sided Morphological Skeleton can be a very
efficient tool in areas such as Multi- Resolution Rep-
resentation, Shape Analysis and Pattern Recognition,
since negative elements are as much important to im-
age comprehenstion as positive elements. It has also a
potential in Coding, because it i3 a compact error-free
representation of the original image.

In this work, the Two-Sided Morphological Skeleton
is defined and studied for both binary and grayscale im-
ages.

I. INTRODUCTION

- The Morphological Skeleton has been successfully
applied in many Image Processing application areas for
efficient shape representation, and as a feature extrac-
tor and classifier (according to size). However, it does
not take directly into account background features such
as “holes” and “negative shapes”, making it less ef-
ficient in such cases. A simple example is shown in
Fig. 1: Fig. 1(a) is a binary picture, where the bigger
white circle is a “positive shape” and the smaller black
circle is a “negative shape”; its ordinary Morphological
Skeleton, calculated with a disk as structuring-element,
is a circle between the two circular edges as shown in
Fig. 1(b). There is a need for more efficient represen-
tations that consider both positive and negative disks,
which would represent the same image with just two
points (the center of each circle), as shown in Fig. 1(c),
by the black and white dots.

The basic morphological operators which are able
to extract both positive and negative features from
given shapes are the Opening-Closing and the Closing-
Opening filters. Several representation structures have
been proposed based on these operators, e.g., [1-3].

Fig. 1: (a) A binary image, (b) its Morphological Skeleton,
(c) a more natural representation of the image.

Toet’s “band-pass” pyramid [1], for instance, is an
error-free representation where the Closing-Opening fil-
ter replaces the LPF in linear pyramids, prior to the
decimation process, and either a Closing or a Dilation
filter replaces the LPF needed in the interpolation pro-
cess. This pyramid does produce a two-sided error-
free representation, in which both positive and neg-
ative features are selected and classified according to
resolution. On the other hand, Toet’s pyramid levels
contain not only genuine image features, extracted ac-
cording to size by the Closing-Opening filter, but also
spurious features, originated from by down-sampling
process [2]. This is because subsampling a morpholog-
ically filtered image is not an invertible process (4, 5].
The genuine features and the spurious ones are indistin-

_guishable, as demonstrated in Fig. 2. Fig. 2(a) shows

a grayscale image and Fig. 2(b) shows its genuine mor-
phological features, obtained at each step by the dif-
ference of the images in the input and output of the
Closing-Opening decimation filter. Fig.2(c) shows the
related Toet’s “band-pass” pyramid, which contains the
features from Fig. 2(b) plus spurious features. The
pyramid in Fig. 2(b) is not error-free, and the non-
morphological spurious features of Toet’s pyramid com-
pensate its lossy nature. Throughout this paper, all
the “band-pass” pyramidal levels are represented with
a shift of 128 in their graylevels, so that negative fea-
tures can also be shown. The structuring-function used
is a 2x2 flat square.

To avoid the generation of spurious features, Zhou
and Venetsanopoulos suggested in [2] a different pyra-
midal representation based on Alternating Sequential
Filters (ASF), with no down-sampling. ASF’s were in-




(©)

Fig. 2: (a) A 128x128 grayscale image, (b) genuine mor-
phological features, extracted by the Opening-Closing filter
at each step, (c) Toet’s pyramid, with spurious features orig-
inated by the down-sampling process.

troduced by Sternberg [6], and analyzed by Serra [7,
chapter 10]. An ASF is obtained by the composition
of Opening-Closing (or Closing-Opening) filters, each
one using an element bigger than the one in the previ-
ous stage. ASF’s have been used extensively in image
filtering.

In [2, 3], the ASF-based “low-pass” pyramid {fn}
was generated in the following way: -
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where f = f(z,y) is the original image, g = g(z,y) is
a pre-defined structuring-function, @, &, o and e de-
note, respectively, grayscale dilation, grayscale erosion,
grayscale opening and grayscale closing, and n-g stands
for g(z,y) dilated n — 1 times by itself.

The related “band-pass” pyramid, called Feature-
Width Morphological Pyramid [2], was defined as the

difference between each level f, and the next level fr41.
Fig. 3 shows the first four levels of the Feature-Width
Pyramid.

It is indeed an error-free representation of the image,
which takes into account both positive and negative el-
ements, and does not have the disadvantage caused by
down-sampling, as in Toet’s pyramid. On the other
hand, the extracted features (both positive and nega-
tive) in level n of this “band-pass” pyramid have width
equals to n, as seen in Fig. 3. Which means that for
an efficient representation, as needed in coding, and for
precision in determining the position of the features,
as needed in pattern recognition, thinning must be per-
formed. The thinning, which is obtained through ero-
sion, i3 not invertible, thus producing spurious features
like the down-sampling in Toet’s pyramid.

The Two-Sided Morphological Skeleton presented in
this paper is an invertible process, providing a thinned
alternative to Zhou and Venetsanopoulos’s pyramid. It
is an error-free representation, with no spurious fea-
tures, formed by the centers of both the positive and the
negative elements extracted at each level of the ASF-
based pyramid defined in (1).

II. TWO-SIDED SKELETON

In this paper we consider only discrete pictures, i.e.,
sets in Z2 (binary discrete pictures) or functions over
Z? (grayscale discrete pictures). The definition and
properties of the Two-Sided Skeleton can be extended
to continuous pictures (sets or functions over R?), but
this extension is not in the scope of this paper.

A. Binary Pictures

(b)

(c) (d)

Fig. 3: (a)-(d) The first four levels of the Feature-Width
Morphological Pyramid of the image shown in Fig. 2(a).



In the binary case, the ASF-based “low-pass” pyra-
mid is defined as follows:

Xn=(Xn-10nB)enB, n>1 2)
Xo=X

where, X is the original shape, B is the structuring-
element, o and e are respectively the binary opening
and the binary closing operations.

As opposed to the thinned version of the Feature-
Width Pyramid, in which the levels are obtained by
first taking the difference between consecutive “low-
pass” pyramid levels, and then performing thinning; the
Two-Sided Skeleton performs first the thinning of each
“low-pass” pyramid level and then takes the difference.
The formal definition is as follows.

The Two-Sided Skeleton of a set X C Z? with a
given structuring-element B C Z? is two collections
of sets {S} 152, and {S;;}5,, where S}t is called the
Positive Skeleton Subset of order n and Sy, is called the
Negative Skeleton Subset of order n. For every natural
n, S} and S;; are given by:

Sz £ (Xnt1 ® nB) = (X ®nB) (3)
5t 2 (Xn ©nB) — (Xns1 © nB) (4)

where {X,} is the “low-pass” pyramid defined in (2).
In (3) and (4), @ denotes binary dilation, © denotes
binary erosion, and the minus-sign denotes here the set-
difference operation. Note that the thinning of negative
features is obtained by dilation, whereas the thinning
of positive features is obtained by erosion.

The Positive Skeleton Subsets {S7}} correspond to
the positive side of the Pattern Spectrum; they con-
tain the centers of positive features that represent the
original image, where by feature we mean a dilated and
translated version of the structuring-element. The Neg-
ative Skeleton Subsets {Sy } corfespond to the negative
side of the Pattern Spectrum; they contain the centers
of negative features.

Let us define the Positive Skeleton of a shape as the
union of all its positive skeleton subsets, and the Nega-
tive Skeleton as the the union of all its negative skeleton
subsets. Figures 4(c) and 4(d) show the Positive and
the Negative Skeletons, respectively, of the shape in
Fig. 4(a). If we compare them with the ordinary Mor-
phological Skeleton, shown in Fig.4(b), we notice that
they represent the shape in a more meaningful and ef-
ficient way. -

The Two-Sided Skeleton subsets fully~represent the
original image X. As shown in the Appendix, every
level n of the pyramid defined in (1) can be recovered
from the lower-resolution level n + 1 by “adding” the
information in the positive and the negative skeleton
subsets of order n in the following way:

Xn = {[Xns1
— (S, ®nB*)]onB
U (S ®nB)}enB - (5)
where B® denotes the set symmetric to B:

(2) (b)

(c) (d)

Fig. 4: The Two-Sided Skeleton versus the ordinary Skele-
ton. (a) A binary Image, (b) its ordinary Morphological
Skeleton with a 3x3 square as structuring-element, (c) its
positive and (d) its negative Two-Sided Skeleton subsets
with the same structuring-element.

B* 2 {—b| be B}. Fig. 5 shows the block diagrama
of the reconstruction process (5).

Since, for a bounded X, there exists a natural N such
that Vo > N, X,, = 0, all the information is retained
in the sets {S}}2! and {S;}2!. By applying (5)
successively from n = N — 1 down to 0, the original
image X = X, is reconstructed.

A partial reconstruction can be obtained by applying
(5) from n = N —1 down to a given number k& > 0. The
image obtained by this process is the pyramid level Xk,
which is a smoothed version of the original image.

B. Grayscale Pictures

A Two-Sided Skeleton may also be defined for a func-
tion f(z,y), with a given structuring-function g(z,y).
The Positive and Negative Skeleton Function of order
n, s} (z,y) and s;(z,y), respectively, are defined as
follows:

if positive
otherwise

(6)
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Fig. 5: Block diagram of the recursive reconstruction

process. (“\" denotes sei-difference).



if positive
otherwise

s+é{ (fren-g)=(frs16n-9g),
n 0,

)
where {fn} is the “low-pass® ASF-based pyramid de-
fined in (1). In (6) and (7), @, © denote, respectively,
grayscale dilation, and grayscale erosion. Note that all
the Positive and Negative Skeleton Functions have non-
negative values.

Fig. 6(a) shows a grayscale picture f(z,y) of size
128x128 pixels (the same one as shown in Fig. 2(a)),
Fig. 6(b)-(e) its skeleton functions for n = 0,...,3, and
Fig. 6(f) the 4** level of the pyramid defined in (1).
The image functions in Fig. 6(b)-(e) were obtained by
the formula s} (z,y) — 85 (z,y) + 128, for n = 0,...,3
respectively, so that the darker lines belong to the nega-
tive subsets and the brighter lines belong to the positive
subsets. Note that all the lines are thin, even for higher
values of n. The structuring-function used is flat with
the shape of a 2x2 square.

As in the binary case, the reconstruction process is
performed iteratively from pyramidal level » + 1 to the
higher-resolution level n with the “addition” of the in-
formation of the positive and negative skeleton func-
tions:

fa={{frs1®n-g
—35,192n-g
+5t)@n-ghen-g (®)

If f(z,y) is spatially-bounded, i.e., if there exists a pos-
itive real M such that f(z,y) = 0 for z2+y? > M, then
there exists a natural N such that f, = 0, Vo > N.
This means that all the information is retained in the
Skeleton Functions of orders less or equal to N —1, and
that an error-free reconstruction from those functions
can be obtained.

Partial reconstructions can be obtained as well, by
stopping the reconstruction process at any level k > 0.

III. APPLICATIONS

Some of the application areas, in which the Two-
Sided Skeleton can be applied, are examined bellow.

A. Multi- Resolution Analysis

The positive and negative skeleton subsets (in the
case of binary images) or functions (in the case of
grayscale images) constitute an error-free. “band-pass”
pyramid, when the related “low-pass” pyramid is the
ASF-based pyramid defined in (1) or (2). In this con-
text, the concepts “band-pass” and “low-pass” relate
not to frequencies, but to size. But like frequency
“band-pass” pyramids, the Two-Sided Skeleton con-
tains at its lower levels (i.e., its subsets - or functions -
of lower orders) the finest details of the image, and at
its higher levels the largest components of the image.

The information contained at some level = of this
“band-pass” pyramid may be viewed as related to those
features that belong to resolution level n, but not to

Fig. 6: The Two-Sided Skeleton of grayscale images. (a)
The same grayscale image as in Fig. 2(a), (b)-(e) composi-
tion of its Positive and Negative Skeleton Functions of order
0 to 3, respectively, (d) the fourth level of the ASF-based
pyramid.

the lower resolution level n 4+ 1. In this sense, a multi-
resolution analysis (and/or processing) can be per-
formed based on the Two-Sided Skeleton subsets (or
functions).

As pointed out in section I, the Two-Sided Skeleton
is preferable to the “band-pass” pyramid presented in
[1] (Fig. 2(b)) and the to thinned version of the Feature-
Width Pyramid presented in [2, 3], because its implicit
thinning process is error-free. This prevents the pyra-
midal levels to contain spurious features, and therefore
provides a more consistent representation.

B. Robust Representation

Although it is not a robust representation, the ordi-
nary Skeleton has some degree of insensitivity to pos-
itive noise, which is noise that contaminates only the
background of a binary image, or that only increments
the values of a grayscale image. However, negative



noise, which contaminates the foreground of a binary
image or decrements the values of a grayscale image,
often alters completely the ordinary Skeleton of an im-
age. Fig. 7(a)-(d) illustrate the behavior of the ordi-
nary Skeleton of a binary image in presence of nega-
tive noise: Fig. 7(a) is the original binary image and
Fig. 7(b) is the same image with 1% negative binary
noise. Fig. 7(c) and Fig. 7(d) are the ordinary Skeleton
of the images in Fig. 7(a) and Fig. 7(b), respectively.
Note how the shape of the skeleton changes.

The Two-Sided Skeleton has the same degree of in-
sensitivity to both positive and negative noise. Since in
many applications the corrupting noise has both posi-
tive and negative components, the Two-Sided Skeleton
should be preferred for working under noisy conditions.
Fig. 7(e-f) demonstrate the behavior of the Two-Sided
Skeleton in the presence of noise. Fig. 7(e) and Fig. 7(f)
are the Two-Sided Skeleton of Fig. 7(a) and Fig. 7(b),
respectively, where the black points refer to the nega-
tive skeleton and the white points to the positive skele-
ton. The structuring-element used in the simulation
was Rhombus (the origin and its 4-pixel neighborhood).

C. Compression and Progressive Transmition

The Two-Sided Skeleton subsets (or functions) pro-
vide a compact representation of the original image,
which permits also efficient Coding of the image.

In the grayscale case, compression may be achieved
by techniques similar to these applied to other “band-
pass” pyramids. Some of those techniques are:

o Allowing a different quantization error at each
resolution level. The higher the resolution level,
the greater the permitted quantization error.
The highest resolution level(s) may sometimes be
totally discarded. (The highest resolution levels
are related to the Jowest function orders).

o Applying different coding methods at different
groups of resolution levels.

For instance, the Two-Sided Skeleton can replace the
thinned version of the Feature-Width Pyramid in the
coding method proposed in [2] and [3]. This is expected
to improve the quality of the reconstructed image be-
cause there is no loss of information in the Two-Sided
Skeleton implicit thinning process. After the Two-
Sided Skeleton is obtained, the coding is done as in
[2] of [3]: the highest resolution levels are decomposed
by a directional morphological filter bank into direc-
tional images, which are scanned in the respective direc-
tion and have their run-lengths coded. The remaining
coarse image is coded by a vector quantization scheme.

The interest in using a morphological pyramid, such
as the Two-Sided Skeleton for image coding, is that it
represents image edges in a more efficient way than lin-
ear pyramids. Since the ordinary Skeleton represent ex-
plicitly the edges of positive elementsonly, it is less suit-
able than two-sided representations for efficient coding.

In the binary case, the Two-Sided Skeleton usually

Fig. 7: The behavior of the ordinary and the Two-Sided
Skeletons under noisy conditions: (a) A grayscale image, (b)
The $ame image, but with 1% binary negative noise, (c) the
ordinary Skeleton of (a), (d) the ordinary Skeleton of (b), (e)
the Two-Sided Skeleton of (a), (f) the Two-Sided Skeleton
of (b).

achieves compression rates similar to those of the or-
dinary Morphological Skeleton, even though there are
two Skeleton subsets at each step m, instead of only
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one as in the ordinary Skeleton. This is because there
are usually less representation points in the Two-Sided
Skeleton than in the ordinary Skeleton, as was demon-
strated in Fig. 4.

In either case, the T'wo-Sided Skeleton is also suitable
for Progressive Transmition (from the highest subset
orders to the lowest ones), since the reconstruction is
performed on a level-by-level basis and since each level
“adds” more details.

D. Image Decomposition :

Every Two-Sided-Skeleton point is accompanied by
two parameters: size (the order of the skeleton subset
or function) and side of the Pattern Spectrum (whether
it belongs to a positive or to a negative subset or func-
tion). By selecting appropriate Two-Sided-Skeleton
points, one can obtain decompositions of the original
image, according to those parameters.

E. Pattern Recognition

Each Two-Sided Skeleton point is the center of
a dilated version of the structuring-element. If the
structuring-element is convex, the dilated versions are
also scaled versions of it. Thus, it is possible to search
for a certain convex shape in a given image by analyz-
ing the Two-Sided Skeleton of that image, when the
structuring-element used in the calculation is the con-
vex shape to be found. Such method, using the ordinary
Skeleton, is expected to detect positive elements only.

IV. CONCLUSIONS

A new morphological representation structure, the
Two-Sided Skeleton, has been defined, both for binary
and grayscale images, and its applications were dis-
cussed. It was shown that the new structure is able
to represent image details in a more meaningful way
than the ordinary Morphological Skeleton, since it con-
siders both the positive and the negative features of
the image. The Two-Sided Skeleton characteristics as
a multi-resolution pyramid, and its advantages over two
other similar morphological multi-resolution represen-
tations, were also pointed out.

APPENDIX

Proof of the reconstruction relation in equation (5).
First we notice that for all n:

-~

Xn+1 ° (n -+ l)B = Xn+1 (Al)
Xn+1 ® nB = Xn+1 (AQ)
Relation (A.1) is a direct consequence of the definition
for {X,} in (2), and (A.2) is obtained from (A.1).
Using (A.2), and since A6 B—-C@®B* = (A-C)6B,
VA, B, C, we get:
Xn+1 — (5: @RBS) = .
= [(Xn+1 @’ILB)GTLB]—(S;EBTLB‘)
= [(Xnt1®nB) - S,1©&nB (A.3)

Also 57 = (Xnt1 @ nB) — (X, & nB) (by definition),
and A— (A— B) = AN B, VA, B. Therefore:
(Xn+1®nB—-S;]onB =
= [(Xny10nB)N(Xn®nB)]onB
= [(Xn+19nB)N(X,enB) (A.4)

From (A.1), (A.2), (A.3) and (A.4), we obtain:
Xn+1 - (S,T D nB’) = Xn+1 NX, (AS)

Performing opening and “adding” now the information
in S}, it follows:
[(Xn+1 N Xn) o nB]U (S} ®nB) =

= [(Xnt1NXn)OnBUST|®nB

= [(Xnt187B)N(X,8nB)US]®nB
Using SF = (Xn &nB) — (Xn41 ©nB) (by definition)
and noting that (AN B)U (A — B) = A, VA, B, we
obtain:

(Xnt1©2B)N(Xn0nB)USTH]|®nB =
[(Xnt1©6nB)N(Xn6nB)U
U(Xn,6nB)—(Xny1 ©6nB)|&nB
(XonB)®nB=X,onB (A.6)

Finally we use the fact that the opening-closing opera-
tion is idempotent, and that X, = X, onBenB, to
state that:

(XnonB)enB =X, (A7)

The reconstruction relation in (5) is then obtained from
(A.5), (A.6) and (A.T).
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