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ABSTRACT

This work presents a new efficient scheme for lossless
compression of binary images, by coding their Morpho-
logical Skeleton Representation. Computer simulations
indicate that, typically, the proposed coding scheme
significantly improves the coding rates obtained by the
best previously known schemes for Skeleton coding,
and is substantially more efficient than coding the orig-
inal binary image by Chain Code, Quadtree and Run-
length/Huffman methods. Comparison to existing cod-
ing standards for scanned bilevel documents places the
proposed algorithm between the Group 3 and Group 4
algorithms, in terms of compression efficiency. The pro-
posed algorithm is fast, when properly implemented.

The proposed scheme is based on new theoretical
results obtained by the authors concerning properties
of the Morphological Skeleton Representation.

1. INTRODUCTION

Mathematical Morphology [1] is a rapidly-growing non-
linear theory for Image Processing and Analysis, based
on Set-Theory, which deals mainly with the geometrical
characteristics of images.

One important tool in Mathematical Morphology is
the Morphological Skeleton Decomposition, which pro-
vides a meaningful, compact representation for binary
images. It consists of a thin simplification of the im-
age, conveying relevant geometrical information, such
as size and connectivity, of the objects contained in it.

The Morphological Skeleton Representation is de-
fined as the collection of centers and sizes of all the
Mazimal Elements inscribable in the given shape. In
the above definition, Flements are shapes picked from a
pre-defined family, such as squares or discs of increasing
sizes, and Mazimal Elements are elements from that
family contained in the shape and not included in any
other bigger element contained in the shape). The cen-
ters of Maximal Elements are called Skeleton points,
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(a)

Figure 1: (a) 256 x 256-pixel binary image “Tools”, and
(b) its Skeleton.

and their sizes are called quench values. The map re-
lating each Skeleton point to its quench value is called
Quench Function. Fig. 1 presents a binary image, and
its skeleton, computed by using a family of squares of
sizes (2n + 1) x (2n+ 1) pixels, n = 0,1,....

The Morphological Skeleton Representation of dis-
crete binary images is very sparse. This encouraged re-
searchers to examine its use in Image Coding {2, 3, 4, 5].
However, the compression rates achieved until now by
lossless-coding of the Skeleton were only comparable to
(and sometimes even worse than) other simpler meth-
ods (such as Chain Coding, Quadtree Decomposition
and Run-length Coding) applied directly to the origi-
nal image. This made many researchers skeptical about
Skeleton-based Coding. However, little was proposed
so far concerning the improvement of the Skeleton cod-
ing scheme [2, 3].

2. BASIC CONCEPTS FROM BINARY
MATHEMATICAL MORPHCLOGY

A discrete binary (bilevel) image is considered in Math-
ematical Morphology as a set in Z2, containing the
foreground-pixels of the given image. In order to pro-
cess and transform this set, one defines another set in
22 usually simple and small, such as a 3 x 3-pixel
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square, which is called a siructuring element. The
morphological operations are based on interactions of
a given image with a structuring element [1].

2.1. Morphological Operations

Let X be a a given set, and B a structuring element,
both in Z2. One defines the dilation and the erosion of
X by B, respectively X @ B and X © B, in the following

manner [1, 2]:

X ®BEU,ex Be,
X & B2 M,ex B-s)

(1)
(2)

where B, denotes the “translation of B to the point
z”, 1.e., Be 2 {b+z| b€ B}. If Bis a3 x 3 square,
centered at the origin, then the dilation attaches to
X those background pixels (points belonging to the
complement of X') having a pixel of X within their 8-
pixel neighborhood, and the erosion removes from X
the pixels that have a background pixel within its 8-
pixel neighborhood.

Binary filtering is obtained by compositions of the
above operations. The opening and the closing of X
by B, respectively X o B and X e B, are defined by:

3)
(4)

Opening usually removes from X isolated points and
thin segments, and closing closes small holes in X.

XoB2(XeB)&B,
XeB2(X®B)oB,

2.2. Discrete Morphological Skeleton Repre-
sentation

In order to calculate the Skeleton, a family of elements
of different sizes must be defined. An element of in-
teger “size” n is defined as (n — 1) times the dilation
of an arbitrary structuring element B by itself, and is
denoted by nB. An element of “radius” zero is the set
containing only the origin, and the dilation, erosion,
opening and closing by it is the identity operation.
The discrete Morphological Skeleton Representa-
tion is calculated with Lantuéjoul’s formula [1, 2]:
Sp=X0nB—-(XenB)oB, n=0,1,... (5)
where S, called Skeleton Subset of order n, is the set
of Skeleton points related to (center of) a Maximal Ele-
ment of size n. The Morphological Skeleton Represen-
tation consists of the collection of Skeleton Subsets, for
n = 0,1,... The Skeleton Subsets can be efliciently
calculated since the sets X ©nB, n = 0,1,.. ., satisfy

the recursion: X ©nB = [X © (n — 1)B] & B. The
Skeleton in Fig 1(b) was obtained using (5) with the
previously mentioned 3 x 3 squared structuring element
B.

The original shape X can be fully or partially recon-
structed from the collection of Skeleton Subsets {S,}
by the formula [1, 2]:

XokB=|]J S.®nB.

n>k

(6)

Full reconstruction is obtained for & = 0 in (6). Setting
k >0 provides a partial reconstruction; it is equivalent
to discarding the Skeleton Subsets of order smaller than
k, and the result is a “simplified” version (opening) of
X. The greater is k, the more simplified is the result.

2.3. Connectivity and Boundaries

In Mathematical Morphology, Connectivity is a concept
related to a symmetric structuring element B according
to the following definition: Two points z and y in Z2
are connected iff z € By (or, equivalently, y € By).
In words, two points are connected if one belongs to
the neighborhood (defined by B) of the other. A 3 x3
squared B defines, in this case, the well-known 8-pixel
Connectivity.

Based on the above definition, one defines for any
discrete binary shape X two boundaries: internal and
external. The internal boundary is the set of points
in X connected to some point in the background (the
complement of X), whereas the external boundary is
the set of points in the background connected to some
point in X.

The above concepts are important for understand-
ing the proposed algorithm.

2.4. Ultimate Erosions

Also important in this work is the concept of Ultimate
Erosion [1], which can be defined as following.

Definition 1 The Ultimate Erosion of order n, de-
noted as Up, s the set of poinis in S, which is not
linked to the set (X ©nB)o B by a connected path of
Skeleton points.

Intuitively, the Ultimate Erosions are those skeleton
points with maximal quench value within each region
of the original shape. (See the example in Fig. 2(a)).
They are usually a very small percentage of the Skele-
ton.



3. PREVIOUS APPROACHES FOR
SKELETON CODING

There are variations of two main Skeleton coding
schemes in the literature: (1) Chain Coding of the
Skeleton lines [3], and (2) Run-length Coding of the
Skeleton Subsets [2].

The motivation for the first of the above schemes is
that, in the continuous case, the Skeleton lines of con-
nected shapes are almost always connected. However,
in the discrete case, as opposed to the continuous case,
the skeleton lines may have many gaps, and this con-
siderably reduces the efficiency of the Chain Coding.

The second method considers each Skeleton Subset
as a very sparse binary image, and therefore suitable
for very low bit-rate coding. The Skeleton Subsets are
coded in decreasing order of n, providing a progressive
transmition scheme, since according to reconstruction
formula (6), if the decoding is halted at a certain point,
a simplified version of the original image is obtained.
However this coding method is inefficient because cod-
ing each skeleton subset independently does not take
into account the strong correlation existing between
them (which is a consequence of the above mentioned
partial connectivity of the skeleton lines).

4. PROPOSED CODING SCHEME

In this section we propose an efficient coding scheme
of the Skeleton Representation. In comparison to the
two previous schemes described in section 3, it is an
hybrid method, since it takes into account the Skele-
ton connectivity, as the first scheme, and is suitable to
progressive transmition, as the second one. Moreover,
it is based on new theoretical properties of the Skeleton
Representation, obtained recently by the authors [6],
which are not considered in the previous schemes. As
a consequence of all of the above, the proposed scheme
typically provides better compression of binary images
than the previous schemes (see section 5 bellow).

4.1. New Skeleton Properties

The new Skeleton properties, presented in [6], are sum-
marized here in two theorems.

The first one strongly relates to the concept of Ulti-
mate Erosion (see section 2.4 above). The theorem as-
sumes that the same symmetric structuring element is
used in the skeletonization process and in the Connec-
tivity definition (see section 2.3 above). Throughout
this paper, we consider the 3 x 3-squared structuring
element for both purposes.

Theorem 1 One can discard from a Discrete Skeleton

Representation the quench values of the Skeleton points
which are not Ultimate Erosions, and still the original
image can be fully reconstructed.

In [6], the above property is proved in a constructive
way, providing a reconstruction algorithm to the above
Skeleton with sampled Quench Function. The recon-
struction algorithm is iterative, finding at each step n
(n varies from its maximal value down to zero) which
of the Skeleton points that are not Ultimate Erosions
have quench value n; these are the Skeleton connected
components that “touch” the set (X © nB) o B, avail-
able (recursively computed by the algorithm) at each
iterative step. Our proposed coding scheme, presented
bellow, is based on this algorithm.

Actually, not all the ultimate-erosion points need
to have their quench value stored. This is due to the
following property stated and proved in [3] in a slightly
different and more restrictive context: The quench val-
ues of all the skeleton points in any connected com-
ponent of the skeleton are the same. Therefore, for
every connected component in the set of ultimate ero-
sions, one needs to store only the quench value of one
point. Note that the set of ultimate erosions is usually
a very small subset of the skeleton points, and, due
to the above considerations, only a small percentage
of them need to have their quench values stored! (See
Fig. 2(b)).

The second theorem on which the proposed scheme
is based is presented bellow. It permits deterministic
prediction of information about S, from the knowledge
about the previously coded points. Assume that the
above reconstruction algorithm related to Theorem 1
is presently at step n, and that the Skeleton Subset of
order n, Sy, is to be coded now. As before, the set
(X ©nB) o B is available, and we denote it as Y, 41.
According to the theorem, the coder and the decoder

Figure 2: (a) Skeleton and Ultimate Erosions of a portion
of the image “Coffee Grains”. The Ultimate Erosions are
the black skeleton points. (b) A subset of the Ultimate
Erosions (the four black points). Their quench values, in
addition to the position of all the skeleton points, are suffi-
cient for perfect reconstruction.
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Figure 3: A point (3, j) predicted not to belong to S ac-
cording to Theorem 2.

can predict that a certain portion of the space does not
contain skeleton points from S,,. The Coding algorithm
then tests points in the space according to this theorem.

In [6] we present the theorem in its generic form,
but since it yields a computationally demanding test,
we also present there a simplified, much faster test for
the 3 x 3 squared structuring element, which we present
here in Theorem 2.

Theorem 2 Let (3,5) € Z2. If any of the iriplets

(
{(z + kl)j)a (Z>.7 + kz)a (1 + k3vj + k3)}:
{(Z - klyj))(iyj - kZ): (7' h k3:j - kB)})
{G+k1,7), (5,5 — k2), (i + ks, § — ka)},
{(i - kllj))(iaj'f‘ kz),(i — ks, i+ k?’)})

for any integers ky, ky and k3 n the interval [2,2n +
1), is contained in Yy41, then the point (i,7) does not
belong to S, .

The points in space not satisfying the condition of The-
orem 2 can either be or not be a S, point. Fig. 3 shows
an example of a point which is predicted not to belong
to Sp.

4.2. The Algorithm

In general lines, the proposed algorithm is as follows.
After the Skeleton Representation is calculated, the
coding is performed in the same way as the decoding,
i.e., by reconstructing the original image. Let IV be the
maximum quench value. Initially, for each of the Ulti-
mate Erosions Uy, 0 < n < N, a set Uy is formed, con-
taining one point of each connected component of U,.
Then, the points in the above sets have their position
and quench value coded. At this point, the main loop
starts. At each step n, which varies from its maximum
value, N, down to 0, a scanning procedure is performed
on the external boundary of Y41 and of U,. Only the
external boundary have to be searched for points in .S,
since the Skeleton points in S, are necessarily linked
either to Y541, if it is not an Ultimate Erosion point, or
to U,,, otherwise. Some points in the above scan can be
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predicted not to belong to S, by the test in Theorem 2;
these points are skipped. The Skeleton points found in
the above scan must belong to S, (according to the
reconstruction algorithm related to Theorem 1), and
their position are coded by an arithmetic coder. When
a skeleton point is found, its boundary is searched for
other connected skeleton points in a recursive way, be-
fore the main scanning procedure goes on.

This procedure is detailed in the following algo-
rithm:

1. Calculate the Skeleton Subsets S,, 0 < n < N,
with a 3 X 3-squared structuring element. Form
- the sets U, as specified above.

2. ne— N.Yng1 < 0.
3. Z — (Yar1 UT,).

4. p « (an external boundary point of Z). If there
are no more external boundary points to scan, go
to step 9.

5. Check (by means of Theorem 2) if p can belong
to Sp or not. If it cannot, go to step 4.

6. Send to the Arithmetic Coder a “0” if p is not a
skeleton point or a “1” otherwise. Use an adap-
tive probability model.

7. If a “1” was sent, Z — (Z U {p}). Otherwise, go
to step 4.

8. Recursively, scan the neighborhood of p for other
connected Skeleton points. Code non-predictable
points with “0” or “1” accordingly, but use a dif-
ferent adaptive probability model than the one in
step 6. After the whole connected component is
scanned and coded, go to step 4.

9. If n = 0, then STOP.
10. n «— (n—1). Y41 — (Z & B). Go to step 3.

5. SIMULATION RESULTS

Two sets of simulation tests are presented in this sec-
tion.

The first one compares, in terms of lossless com-
pression efficiency, the proposed algorithm with some
simple, well-known coding schemes for binary images.
The test image is the 256 x 256-pixel “Tools” (Fig. 1),
and the results, in bits-per-pixel, are presented in Ta-
ble 1. According to it, the proposed Skeleton coder
provides the best compression.

The second set of simulation tests examines the
efficiency of the proposed Skeleton coder in coding



CCITT dg Proposed Progressive
Images | G3D1 | Skeleton | G3D2 | Skeleton | G4 JBIG
' #1 37423 | 28261 | 25967 | 20405 | 18103 16771
Coder Bit-rate #2 34367 | 19058 | 19656 | 12681 10803 8933
Ziv-Lempel #3 65034 | 49018 | 40797 | 37535 | 28706 23710
(“Compress” in Unix) 0.171 #4 108075 | 102848 | 81815 | 82194 | 69275 58656
Run-length + Huffman | 0.152 #5 68317 | 52476 | 44157 | 40259 | 32922 28086
Quad-tree 0.131 #6 51171 | 30658 | 28245 | 24615 | 16651 13455
Chain-Code 0.091 #7 | 106420 | 112301 | 81465 | 83398 | 69282 60770
Skeleton (proposed) | 0.071 #8 62806 | 35965 | 33025 | 24815 | 19114 15227

Table 1:

Lossless compression rates,

Table 2: File sizes of compressed facsimile standard CCITT documents, obtained

in bpp, of the proposed Skeleton coder by the proposed Skeleton algorithm, compared to previous Skeleton-Based coder

and other known schemes, for the image
“Tools”.

scanned documents (fax), and compares it to existing
standard coders. The previous Skeleton-Based scheme
proposed in [3] (denoted dg Skeleton) is also compared.
The eight CCITT facsimile standard test 2376 x 1728-
pixel images, of documents scanned at 200 dpi, are
lossless coded by the proposed algorithm. Table 2 com-
pares the size of the obtained coded files with the re-
sults given in [7] and [3]. Comparison of our results
to the dg Skeleton shows a substantial improvement in
Skeleton-based Coding. At this point, it is still weaker
than the most advanced Standards (G4 and JBIG), but
it is comparable to the 2-dimensional Group 3 Standard
(G3D2, with k = 4), being usually more efficient than it
(with exception of the “hardest” images, #4 and #7).

Since the scanning in the algorithm is performed
on the boundaries of the expanding set Z only, the
coder and the decoder procedures are fast. On a Digital
DECStation 5000, programmed in Standard C, coding
of the 256 x 256-pixel image “tools” takes about 4 sec-
onds, and its decoding about 2 seconds.

6. CONCLUSION

A new binary image coding scheme, based on the Mor-
phological Skeleton Representation, is presented and
compared to other well-known schemes and Standards.

The coding scheme is suitable for “progressive
transmition”, and takes into consideration néw skele-
ton properties not used by previous Skeleton coding
schemes.

The algorithm is shown to outperform a previous
Skeleton coder presented in [3], and the Group 3 Stan-
dard coders, for facsimile scanned documents (with ex-
ception of dense images, where G3D2 gives slightly bet-
ter results). The proposed algorithm does not achieve
the compression rates obtained by Group 4 and JBIG

and existing standards.

algorithms, but improvements in the scheme and the
effect of different structuring elements are still to be
tested.

Since scanned documents are composed of thin
graphic lines and text, the thinning effect of the Skele-
ton Representation is strongly reduced. For binary im-
ages having foreground objects with larger width, the
proposed Skeleton coder is found to be superior to the
well-known Ziv-Lempel, Run-length 4+ Huffman, Quad-
tree and Chain coders, and its complexity is on par with
their complexity.
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