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INTRODUCTION

Time-frequency representations map one-dimensional signals into two-dimensional im-
ages that indicate their energy content in the joint time-frequency plane [1, 2]. These
representations combine time-domain and frequency-domain analyses to yield a more
revealing picture of the temporal localization of spectral components. They have proven
indispensable in a wide range of applications, including the study of non-stationary
phenomena in high power microwave tubes, such as mode build-up and competition
and pulse shortening [3].

A popular time-frequency analysis tool is the spectrogram, a squared magnitude
of the short-time Fourier transform. Its major limitation is the inherent trade-off
between time and frequency resolution for a particular window function. Since good
time resolution requires a narrow window while good frequency resolution requires a
wide window, high resolution simultaneously in both directions is unattainable. This
limitation promoted the development of bilinear time-frequency representations that
attempt to match the window function to the analyzed signal [1]. Unfortunately,
the bilinear nature of the latter representations results in a high noise sensitivity and
presence of interference terms, which restrict their practical application.

In this paper, we present a wavelet-based method for constructing an efficient time-
frequency representation, which is characterized by high time-frequency resolution,
noise immunity and reduced interference terms. This method also provides a robust
nonlinear technique for estimating a discrete signal from its noisy measurement.

SHIFT-INVARIANT WAVELET PACKET DECOMPOSITION

Overcomplete libraries of waveforms that span redundantly the signal space encourage
adaptive signal representations. Instead of representing a prescribed signal in a fixed
basis, it is often useful to choose a suitable basis that facilitates a desired application,
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Figure 1: Test signal g(¢) consisting of a short pulse, a tone and a nonlinear chirp.

such as compression, identification, classification or noise removal (denoising). The
library of wavelet packets is a huge library of bases that consists of translations and di-
lations of wavelet packets [4, 5]. The basis functions are localized in the time-frequency
plane, and organized in a binary tree structure where efficient search algorithms for the
best basis can be implemented.

The shift invariant wavelet packet decomposition (SIWPD) [6] is an adaptive rep-
resentation in an extended library of wavelet packet bases. The extended library
includes an additional degree of freedom that adjusts the time-localization of the basis
functions. This degree of freedom is incorporated into the best-basis search algorithm
by adaptively selecting between even and odd down-sampling. Specifically, following
the low-pass and high-pass filtering, when expanding a parent-node, either all the odd
samples or all the even samples are retained, according to the choice which minimizes
the cost function.

Let {¢,(t) : n € Z,} be a wavelet packet family [4] generated by

boull) = VZY hithul2t — ) (1)

keZ

¢2n+1(t) = \/5 Z gk¢n(2t - k) (2)

keZ

where gr = (—1)¥hi_, and (1) = ¢(¢) is an orthonormal scaling function, satisfying

(p(t —=p)yp(t —q)) =bpg, PqEZ. (3)

The extended library of wavelet packets is defined as the collection of all the orthonor-
mal bases which are subsets of

{Bonm 1 0<L< L 0<n,m< 20"} (4)
where [ denotes the finest resolution level, and
Bpm = {27, [2(t = 27"m) — k] : 0 <k <2} (5)

This library is larger than the standard wavelet packet library by a square power, but
can be still structured into a tree configuration which supports fast search algorithms
[6]. The additional parameter m provides the crucial degrees of freedom required for the
time-adjustment of the basis functions. When an analyzed signal is translated in time
by 7 = q-27F (q € Z), a new best-basis is selected whose elements are also translated
by 7 compared to the former best-basis. Thus the expansion coefficients remain, and
the time-frequency representation is shifted in time by the same period.
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Figure 2: Effect of a temporal shift on the time-frequency representation using the WPD with 8-tap
Daubechies wavelet filters: (a) g(f) in its best basis, Entropy= 2.69. (b) g(¢ —27°) in its best basis,
Entropy= 2.72.
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Figure 3: Time-frequency representation using the SIWPD with 8-tap Daubechies wavelet filters:
(a) g(t) in its best basis, Entropy= 1.72. (b) g(t — 27%) in its best basis, Entropy= 1.72. Compared
with the WPD (Fig. 2), beneficial properties are shift-invariance and lower information cost.

Compared with the ordinary wavelet packet decomposition (WPD) [4], the SIWPD
is determined to be advantageous in the following respects [6]: 1) Shift-invariance;
2) Lower information cost; 3) Improved time-frequency resolution; 4) More stable
information cost across a prescribed data set; 5) Controlled computational complexity
(at the expense of the information cost down to O(NlogaN)). To illustrate the shift-
invariant properties of the SIWPD and its enhanced time-frequency representation
compared to the standard WPD, we refer to the expansion of the signal g(¢), depicted
in Fig. 1. This signal, containing 27 = 128 samples, comprises a short pulse, a tone
and a component with nonlinear frequency modulation. For definiteness, we choose Dy
to serve as the scaling function (Dg corresponds to 8-tap Daubechies least asymmetric
wavelet filters [7, page 198]) and the Shannon entropy as the cost function, defined
by [4] M({xi}) = — Xiz.z0 i log z}. Figs. 2 and 3 display the best-basis expansions
under the WPD and the SIWPD algorithms, respectively, for the signals ¢(t) and
g(t —27%). The sensitivity of WPD to temporal shifts is obvious, while the best-basis
SIWPD representation is indeed shift-invariant and characterized by a lower entropy
and improved time-frequency resolution.

MODIFIED WIGNER DISTRIBUTION

The Wigner distribution (WD) possesses a number of desirable mathematical properties
relevant time-frequency analysis. However, the presence of interference terms renders



the WD of multicomponent signals extremely difficult to interpret [1]. Several methods,
developed to reduce noise and cross-components at the expense of reduced signal
concentration, employ some kind of smoothing kernel or windowing [2]. The choice
of the kernel dramatically affects the appearance and quality of the resulting time-
frequency representation. Hence adaptive representations often exhibit performance
far surpassing that of fixed-kernel representations. However, they are either computa-
tionally expensive or have a very limited adaptation capability.

Recently, we have introduced a modified Wigner distribution (MWD) [8], which
obtains high resolution and concentration in time-frequency, and is superior in elim-
inating interference terms. We showed that using extended libraries of orthonormal
bases, interference terms can be reduced by adaptively thresholding the cross WD of
pairs of basis functions.

Let g = >\ capa be the SIWPD of the signal g. Then its MWD 1is defined by

Tt0) = Y e Wo(ho) 42 Y Re{eni Wiy (1)} (6)
AeA {\\yer
where W, is the auto WD of ¢y and W, ,,, is the cross WD of .:
W) = [t +7/2)g3(t = 7/2)e7dr (7)
Werion(t.) = [ ex(t+7/2)63,(0 = 7/2)7dr (8)

The summations in (6) are limited to basis-functions whose coefficients are large enough,
and to pairs which are “close” in time-frequency plane. Let € and D denote respectively
thresholds of relative amplitude and time-frequency distance. Then the sets A and T
are given by

A= el zeM), M = max{fe[} (9)
I'= {{/\7/\/} | 0< d(@/\ﬁ‘o/\') < D7 |c/\c/\’| > 62M2}7 (10)

The distance d between a pair of basis-functions is measured by their degree of adja-
cency:
- - _ _ 1/2
(t)\ — ?f/\/)2 (u)/\ — t.u/\/)2
d(pr, o) = (11)
ALALy AwrAwy

where (1,,@,) is the time-frequency position of the basis-function ¢, and At and Aw,

are the corresponding time and frequency uncertainties. By adjusting the distance

threshold D and amplitude threshold ¢, one can effectively balance the cross-term

interference, the useful properties of the distribution (time/frequency marginals, energy

conservation, instantaneous frequency, efc.), and the computational complexity [9].
Here, the basis-functions are of the form

Vrinm k(1) = 2%, [28(1 — 27" m) — ] (12)

where £ is the resolution-level index (0 < ¢ < L), n is the frequency index (0 < n <
28=4)) m is the shift index (0 < m < 2F7*) and k is the position index (0 < k < 2°).
Each basis-function is associated with a rectangular tile in the time-frequency plane
which is positioned about

1=2""k+ 27 m + (22 —1)Ch + (Ch — C,)R(n), (13)
w=2""GC™ (n) 4+ 0.5], (14)



Figure 4: Contour plots for the signal g(t): (a) Modified Wigner distribution; (b) Wigner distribution;
(c) Choi-Williams distribution; (d) Spectrogram; (e) Cone-kernel distribution; (f) Reduced interference
distribution. The modified Wigner distribution eliminates the interference terms while retaining high
energy concentration of signal components.

where ('}, and C; are respectively the centers of energy of the low-pass and high-pass
quadrature filters h and ¢ [5], defined by

1
h =
151

1

ST klhel?, = ST kgl (15)

keZ H9H2 keZ

R(n) is an integer obtained by bit reversal of n in a L — ¢ bits binary representation,
and GC~! is the inverse Gray code permutation. The width and height of the tile are
given by

At =27" Aw=2"", (16)

Fig. 4(a) shows the MWD for the signal g(¢), attained by utilizing expression (6) com-
bined with the thresholds D = 1.5 and ¢ = 0.1. Figs. 4(b)-(f) describe respectively the
WD, the Choi-Williams distribution, the spectrogram, the cone-kernel distribution and
the reduced interference distribution [2]. Clearly, the MWD achieves high resolution
and concentration in time-frequency, and is superior in eliminating interference terms

associated with the WD.

TRANSLATION-INVARIANT DENOISING

The use of wavelet bases for estimation of signals embedded in noise has been the object
of considerable recent research. While traditional methods often remove noise by low-
pass filtering, thus blurring the sharp features in the signal, wavelet-based methods
show good performance for a wide diversity of signals, including those with jumps,
spikes and other nonsmooth features [10, 11, 12]. The transform-based thresholding
method consists of three steps: transformation of the noisy data into a time-scale
domain, soft or hard thresholding to the resulting coefficients, and transformation back
into the original space. This scheme necessitates determination of the “best” basis and
threshold value, leading to the best signal estimate. It is useful to employ the library
of wavelet-packet bases as a collection of competing models, and select the best model



according to the Minimum Description Length (MDL) criterion [11, 13]. However,
denoising based on the conventional WPD may exhibit visual artifacts, attributable to
the lack of shift-invariance [12].

One approach to attaining shift-invariance is to average the translation dependence:
applying a range of shifts to the noisy data, denoising the shifted versions with the
wavelet transform, then unshifting and averaging the denoised data [12]. This pro-
cedure, termed Cycle-Spinning, generally yields better visual performance on smooth
parts of the signal. However, transitory features may be significantly attenuated [14].

In this section, we present a translation-invariant signal estimator, which is based
on the SIWPD and the MDL criterion. A collection of signal models is generated using
the extended library of orthonormal wavelet-packet bases, and an additive cost function,
approximately representing the MDL principle, is derived. We show that the minimum
description length of the noisy observed data is achieved by utilizing the SIWPD and
thresholding the resulting coefficients. This estimator is efficiently combined with the
MWD, yielding robust time-frequency representations that are characterized by high
resolution and suppressed interference-terms.

Let y(t) = f(t) + z(t) represent the noisy observed data, where f(t) is the unknown
signal to be estimated, and z() is a white Gaussian noise with zero mean and a known
power spectral density o Denote by B the extended library of wavelet packet bases.
The description length of y represented on a basis B € B is given by [9]

L(By)= > L(Biamy) (17)
(Ln,m)eR
where
1N 2 2
L(Binmy) =3+ 95213 ; min {C’Z’n’m’k(y) , 307 1In N} (18)

is the codelength associated with a terminal node (¢, n,m), and

Bé,n,my = {Cé,n,m,k(y) = <y7 ¢Z,n,m,k> o1 < k < QEN} (19)

are the expansion coefficients of the observed data. Since the codelength in Eq. (17)
constitutes an additive cost function, the STIWPD gives the optimal basis according to
the MDL principle. The optimal estimate of f(¢) is obtained by expanding the observed
data y(t) on the optimal basis A = {(5;6} N and hard-thresholding the coefficients

by 7 = ov/31In N. Specifically,

1<k<

fl) = kZ_: 7 (y)du (1) (20)

where y, = <y,qAD’k>, and n;(c) = clyysry is the hard-threshold function. The time-
frequency distribution estimate of y is obtained by computing the MWD for the signal

estimate:
Ty(t,w) = Ty(t,w) = 3 sl "Wy, (L,w) +2 > RefuwypWy, 5, (L)} (21)
keA {k,k'}el
where
A={k : |y| >oV3InN, 1 <k <N}, (22)
M= {{kk} : kK €A 0<d(dpdp) <D} (23)
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Figure 5: Electromagnetic pulse in a relativistic magnetron (heterodyne detection; local oscillator=

2.6GHz): (a) Noisy measurement y(t). (b) Wigner distribution for y(¢). (c¢) The signal estimate f(¢)
by the MDL principle. (d) The estimate of the modified Wigner distribution for y(¢). (e) Residual

between y(t) and f(t). (f) Smoothed pseudo Wigner distribution for y(t).

Fig. 5(a) shows a noisy measurement of an electromagnetic pulse (& 100 nanosec-
onds long) generated by high power (& 100 MegaWatts) relativistic magnetron. The
measurement involves heterodyning at 2.6GHz, filtering at 500kHz and sampling at
1GHz [3]. The Wigner distribution, depicted in Fig. 5(b), is clearly ineffective as a
time-frequency analysis tool, for its high noise sensitivity. Yet, the estimates of the
signal and the MWD, as shown in Figs. 5(c) and (d), are potentially valuable when
analyzing the measurements and studying the non-stationary phenomena, such as mode
build-up and competition and pulse shortening [15], which are common in such high
power microwave tubes. The residual between the noisy measurement and the signal
estimate is depicted in Fig. 5(e). To ascertain that this residual is actually the noise
component, we compare the estimate of the MWD with the smoothed pseudo Wigner
distribution of the noisy measurement (Fig. 5(f)). Since these two distributions are
similar, in view of the fact that smoothing in the Wigner domain reduces the noise
at the expense of smearing the signal components, it is reasonable to assume that the
signal estimate contains all the signal components and the residual is mostly noise. A
detailed derivation and implementation of the proposed estimator, examples illustrating
its performance, and a discussion of the relation to other work is given in [9].

CONCLUSION

Cross terms associated with bilinear distributions are not necessarily interpretable as
interference terms. Any signal can be broken up in an infinite number of ways, each of
which generates different cross terms. Therefore, it is important to choose an appro-
priate decomposition that separates the parts which are well delineated in the time-
frequency plane. We have presented a modified Wigner distribution, where undesirable
interference-terms can be eliminated while still retaining high energy concentration.

A prescribed signal is expanded into a redundant library of orthonormal wavelet-
packet bases, from which the best decomposition is selected, and subsequently trans-



formed into the Wigner domain. The discrimination between beneficial cross terms,
which primarily enhance the useful properties of the time-frequency representation,
and undesirable interference terms is determined according to the degree of adjacency
and relative amplitudes of the interacting basis functions; Only adjacent pairs whose
coefficients are large enough are related to the same component of the signal. The
balance between interference terms, concentration and computational complexity is
achieved by adjusting the distance and amplitude thresholds.

A translation-invariant denoising method, which uses the SIWPD and the MDL
criterion has been described . The MDIL principle is applied for approximating the
description length of the noisy observed data and for choosing the optimal wavelet-
packet basis. The proposed signal estimator, combined with the modified Wigner
distribution, generates robust time-frequency representations.
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