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Abstract

This work presents a new approach to contour
representation and coding. It consists of an improved
fitting of high-degree (4" to 18") implicit polynomials
(IPs) to the contour, which is robust to coefficient
quantization. The proposed approach to solve the fitting
problem is a modification of the 3L’ linear solution
developed by Lei et al and is more robust to noise and to
coefficient quantization. We use an analytic approach to
limit the maximal fitting error between each data point
and the zero-set generated by the quantized polynomial
coefficients. We than show that consideration of the
quntization errvor (which led to a specific sensitivity
criterion) also brought about a significant improvement
in fitting IPs to noisy data, as compared to the 3L
algorithm.

1. Introduction

Implicit polynomials (IPs) are global models with
good representation power of complex object boundaries
in 2D images and surfaces in 3D range data [1,3,4]. Their
power of discrimination by using euclidean and affine
invariants has made them attractive for object recognition
[2,5]. This work deals with fitting an IP of degree up to
eighteen, whose zero-set is a geometric model for an
object boundary. This model can be used in the context of
a general scheme for contour-based coding. IPs should be
used where the rate required for contour coding is critical
and the complexity involved in polynomial fitting is
justified. This work takes into account the effect of
quantization used to compress the resulting polynomial
coefficients from real numbers to integers (for example, 8
bits for each coefficient). The zero-set fitting generated
by the quantized coefficients is the reconstructed data
after the compression process [7]. The proposed
algorithm for fitting is robust to noise and to coefficient
quantization. Our approach originates from a sensitivity
criterion, which leads to a derivation of tight error
bounds, and to a fitting algorithm that focuses on
minimizing these bounds — yielding a min-max solution
to the fitting problem. The sensitivity function, describing
the relation between the value changes of the polynomial

coefficients (quantization effect) and the location changes
of the zero-set, allows us to calculate the fitting error
caused by the quantization effect for each data point. The
sensitivity function has to have the same value at each of
the data points in order to minimize the maximal fitting
error and to reduce large local errors, which may appear
in the original 3L fitting algorithm. We have based our
development on the 3L algorithm [4], but made necessary
changes to improve it. Our conclusion is that the 3L
algorithm can be improved in terms of a tighter fit and
robustness to coefficients quantization, as presented in
this paper.

The layout of this paper is as follows: Section 2 poses
the fitting problem. Section 3 presents a study of the
sensitivity of the zero-set relative to changes in the
coefficients of the polynomial, and the resulting error
properties. In Section 4 we construct our fitting
algorithm, based on the 3L algorithm and the results of
Section 3. Section 5 provides simulation results and
Section 6 summarizes the paper.

2. Fitting Problem

The object of polynomial fitting is to describe data
points (object boundary for 2D objects or surfaces for 3D
objects) with the zero-set of a polynomial. Therefore, we
would like the value of the polynomial to be zero at the
location of the data points.

The value of the polynomial at a point (x,y) can be
described as the product of two vectors — a parameter
vector {containing the polynomial’s coefficients), and a
vector of monomials.

For a d" degree polynomial, the monomial vector is
denoted as:

plxy)=[p(x2)s 2, (5, ¥)] =

0,0 1.0 0.1 d. 0 _d-1_1 Ld-l 0. d
[xy S XY XY e XY LXT Y e XYL XY ]

()

where ,=(d+1)d+2)/2 and the parameter vector is
a=la,a,,..a,]-

The value of the polynomial described by a at location
(x, y) is:

P(x,y)=ap" (x,) 2
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We are looking for a parameter vector @ that leads to a
polynomial that best fits the data under a criterion to be
specified.

3. Zero set sensitivity to parameter changes

When the values of the coefficients in the parameter
vector change, the entire zero-set changes. In this Section
we examine how changes in the parameter vector affect
the location of a point on the zero-set. Since the zero-set
is continuous, we cannot measure the distance between
two points (before and after a parameter change). The
location: of a point on the zero-set can be defined as
Z= (Z,:Zu) where z, is the component locally tangent to

the zero-set, and z, is the component locally

perpendicular to the zero-set (see Fig.1). We denote the
angle of the perpendicular relative to the X axisas «.
Small changes in the tangent direction move zero-set
points back into the zero-set, therefore for the purpose of
evaluating changes in the zero-set, it is sufficient to
examine changes in the component z, only. We define

the change in a zero-set point (a’u( g y)) as the

perpendicular component of the distance between the
original zero-set point and the closest point on the new
data set (following the change in the parameter vector).
We can define the perpendicular component of the
change in the location of a zero-set point g, (x,y),
change in the parameters
the product of the error

components with the associated sensitivity function:
rJ - T
£u(x’y)=S;(x7y)6a (3)
where the sensitivity function 3¥(x,y) is a vector
defined by:

resulting from a

g, =le, . &,]as

a a

52 (5= 222)
da

3.1. Sensitivity function evaluation

4

The sensitivity function (4) can be written as a product

of two independent parts:
S y)= dulx,y) dP,(x,y)

N dB(x,y) da
where P_(x, y) is the value of the polynomial described by

&

a atlocation (x, »)-

The right-hand part of the product in (5) describes the
change in the value of the polynomial, at the location of
the original zero-set point, due to a small change in the
parameter vector. This part is a vector (has an element for
each of the elements in @ ). The left-band part of the
product describes the deviation of the zero-set point in
the direction perpendicular to the zero-set due to a small
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change in the value of the polynomial, at the location of
the original zero-set point. This part is a scalar.

We shall evaluate each part of the product in (5)
separately, beginning with the left-hand part.

The deviation in the location of a zero-set point in a
direction locally perpendicular to the zero-set, following
a change in the parameter vector, is described in Fig. 1.

local prependicular ~
to the zero set

Original Position /

of zero set point

Fig. 1. — Location of a zero-set point before and after a
small change in the coefficients

For small changes in the parameter vector the ratio
between the position error in the perpendicular direction

du(x, y)and the change in the value of the function is
the inverse of the gradient of P, (x, y):

1 1 ®
x,y)=‘

e \/(EJE ;x, y)]2 +(aPE a(x, y))z
x y

The right-hand part of the product in (5) can be directly
calculated from (2), and r(esults in: )
dP;(x,y) _dlap’(x.»)) _ )
P = =p(x,y)
Using (5), (6) and (7) the sensitivity function in (4) can
now be written as:

e
dP.

a

- plx.y)
- Ve o (8)
S¥(x,y) IVE, (x, )]

3.2. Zero-set fitting errors

Now, we can examine the resulting fitting errors due to
small changes in the coefficients and derive some useful
bounds on these errors.

Using (3) and (8),
perpendicular to the zero-set, £, (x, y) , Is:

Zpk(x,y)é‘ak

&(xy)=8(x»)& =k—ZIIV—P;(T,W

For a given point (x, y) on the zero set, the maximal
error can be bounded by:

kZ; pi(xy)e, ' Z |pe(x.y)
= =

<&
WGy = VR ey
where £, = Max

the error in the direction

e

(10)

le, (x, »)} <

e,




When components of the error vector are independent
random variables with zero mean, the variance of

£, (x, y) is given by:

(o) varle, ) an

(\ZAESY s
and when all the error components have the same
variance (var(g, ) = o2 ), we obtain:

‘/g,pf(x,y)

var(e, (x,y)) = 0, VP, (x, )]

4. A robust fitting algorithm

var(e, (x, y)) =+

(12)

In Section 3 we analyzed the changes in the location of
zero-set points resulting from changes in the parameters.
We would like the zero-set to remain as close as possible
to the original data set points. If we consider the resulting
parameter vector as the sum. of a locally optimal
parameter vector and some added error, we can look at
each data-set point as being a point on the zero-set of the
locally optimal parameter vector. Therefore, we can use
the results of the above analysis by substituting the
zero-set points by the given data-set points to evaluate the
expected fitting error.

Reference [6] includes a complete description of the
formulation of the fitting algorithm. Here we present the
highlights of this formulation.

In order to obtain the best parameter vector we need to
define a criterion according to which we would perform
the optimization process.

We are interested in two properties — a) best fit to the
data, b) minimal deviation due to changes in the
coefficients. From the results of Section 3 we conclude
that the deviation of the zero-set of the polynomial due to
changes in the coefficients is governed by the ratio
between some operand on the value of the monomial
vector and the gradient of the polynomial (10), (12). The
bound on the maximal error, or on the variance depends
on that operand. To obtain a best fit and to minimize this

deviation, we construct a cost function e,, which is

minimized when the value of the polynomial and the
sensitivity function at the location of data-set point
(x,,y,) is minimal. The sum of squared errors is used as

a global cost function - E . Therefore, a coefficient
vector that minimizes E leads to an optimal fit, under
the criterion defined by the selected bound on the
sensitivity function.

E=ge’
the

(xn,y,,),n =1,2,...,N, and the vector e = (e,,...,eN) is

13)

where e, s error at data  point

calculated by:
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e=(@aM-»b) (14)
with the following definitions:
b=p & @ a5

M =[M0 My M Y]
where ?.i—x,ZJ; are vectors defining the required

differentials (see below) of the polynomial at the data
points and,

M, =[ﬁr(xny1) ﬁT(xNayN)] 16
M, =[ﬁxr(xny1) ﬁxr(xzv»y/v)] a9
M, =[ﬁyr(x1’}’1) ﬁyr(xzv,}’)v)]
with,
P50 3,) =2 B(x,03,): Bty 2,) = Blx,.9,) 07
dx dy

According to [6], the vectors dx and dy in (15)

characterize the fitting algorithm. To obtain a fitting
algorithm which minimize the max error (Min-Max),

dx = [dx, ..., dx) | and dy =[dy, ..., dy, | should satisfy:

a,
dx

T+, =3 |p 0 0)
k=1

where ¢, is the angle of the local perpendicular to the

=1g(a,) as)

data-set around point (x ») relative to the X axis, as

shown in Fig 1.

Using the same formulation, we can implement a fitting
algorithm, which minimize the variance (Min-Var) of the
error (over the elements of the error components). This is
done by requiring dx and dy to satisfy:

Le = tglar)
dx, (19

e+ ay,?)= ,’Z p(x,,5,)
k=1

Since no data point has priority over any another point
(if no weighting is used), we can limit the maximal fitting
error due to changes in the coefficients to a given value

€ \ux (see (10)) by requiring that:
VP, (x, N = Y|P (%, 3, ) for n=1,..., N 20)
k=1

The coefficient vector that minimizes F in (13) is
denoted as dpr . We obtain dpp by evaluating:
Aopr = b—MT(MMT )—1
where b, M are defined in (15).
5. Simulation results

(21

In this Section we present simulation results of the
original 3L fitting algorithm in comparison with the
Min-Max and Min-Var algorithms described in Section 4.



The data used here is taken from segmented medical
images.

5.1. Sensitivity analysis

Here we examine the sensitivity of the algorithms
presented in this paper to coefficient changes. We add
uniformly distributed random noise to the coefficients to
simulate the effect of quantization.

Tables 1(a), 1(b) compare the errors obtained using the
examined fitting algorithms for the boundaries of two
different objects, each quantized with a different number
of bits per coefficient.

The same random noise was added to the coefficient
vectors obtained via each fitting algorithm. For each
algorithm two error criteria were examined:

Eppp = zvlef s E,y =max{e,,...,e, } (22)
n=t

The mean value and variance (over different noise
vectors) of these tests are shown in Tables 1(a), 1(b).

_(a) TABLE 1
Algorithm => 3L Min-Max Min-Var
Criteria Mean Var Mean Var Mean Var
E 0.04 0.034 0.02 0.003 0.019 0.0033
RMS
E 0.15 0.22 0.046 0.007 0.044 0.015
MAX
(L)
Algorithm => 3L Min-Max Min-Var
Criteria Mean Var Mean Var Mean Var
E 0.042 0.001 0.035 0.0007 0.032 0.0008
RMS
E 0.11 0.007 0.097 0.0063 { 0.079 0.0088
MAX

(a): Order — 12, Bits — 16 (b): Order — 4, Bits — 6
The original 3L algorithm does not define any
sensitivity goal and therefore achieves no best score in
any test.
For both objects, the mean error is the minimum when
using the Min-Max algorithm, and the error variance is
minimal when using the Min-Var algorithm.

5.3. Unquantized fitting

We present in this subsection the comparison of fitting
two objects using the 3L algorithm and the proposed
Min-Max algorithm. In each case the fitting was done
with 14" degree polynomials. The fitting results of two
different boundaries are shown in Fig 2.

It is possible to see the significant improvement in the
fitting results going from the left column (3L) to the right
column (Min-Max).

Polynomials of high degree (here 14™) exhibit high
sensitivity to noise. The shown examples clearly
demonstrate the effect of using a sensitivity criterion on
the quality of the solution.
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6. Conclusion

To summarize, we conclude that the fitting algorithm
presented in this paper can generate implicit polynomials
that well represent object boundaries. This representation
can be useful for a variety of applications, among which,
are object recognition and, with the addition of
constraints for avoiding spurious zero-set points [6,7],
also contour coding of animated objects.

il 1

(b1)
Fig. 2 — Fitting results: 14" order polynomials
Left - 3L algorithm, right — Min-Max algorithm
Continuous line displays original data.
Crosses display zero-set of the polynomial.

(b2)
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