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A GEOMETRIC SAMPLING THEOREM AND ITS APPLICATION
IN MORPHOLOGICAL IMAGE CODING
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This paper deals with reconstruction properties of the skeleton representation, presents
a Geometric Sampling Theorem (GST), and describes an approach for gray level image
coding based on it and on binary morphological opekations. The theorem states conditions
for the reconstruction of the boundary of a continuous two level image from a unique subset
of points of its skeleton representation. This set of points, called singular points, plays an
important role in the skeleton representation of discrete binary images as weil. The coding
scheme consists of the following steps: First, the image is pre-processed by an error-diffusion
technique. The pixel values are subsequently converted to Gray-code. The bit-planes are
represented by a modified morphological skeleton which uses an increastng size structuring
element. Redundancy in this representation is reduced with an algorithm motivated by the
GST. These reduced modified morphological skeletons are coded with an entropy coding

'
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1. INTRODUCTION

Medial axis and skeleton representations have
received much attention; both in theoretical {1-4}, and
in practical aspects [5]. This paper concentrates on
reconstruction properties of the skeleton, and
presents a Geometric Sampling Theorem (GST).
The theorem deals with the representation, via a
skeleton subset, of sets in the continuous two dimen-
sional space R2. In the second part of the paper, an
approach for gray-scale image coding is described
{6], which is based on the GST and on a modified
morphological skeleton which uses an increasing
size structuring element instead of a fixed size ele-
ment as in [5].

The GST states conditions for the reconstruction
of the boundary of a continuous two level image (i.e.

a set of R?) from a unique subset of points of its.

skeleton representation. We describe this set of
points, called singular points, along with some of
their properties. Analogy between this theorem and
the classical Sampling Theorem is given as well. In
the case of discrete binary images (i.e. sets of Z3),
we found that the singular points of the discrete
skeleton convey most of the information required for
reconstruction. Based on this fact, we develop an
algorithm for efficient computation of the minimal
skeleton of discrete binary images (i.e. a subset of
the skeleton whose points are sufficient for exact
reconstruction).

The approach used for image coding is as fol-
lows: The image is first pre-processed by an error dif-

scheme particularly devised for efficient skeleton coding.

fusion technique in order to reduce.the number of bit
planes, without significant quality degradation. The
pixel values are subsequently represented in Gray-
code, in order to obtain more uniform bit-planes.
These bit-planes are represented each by means ot
a modified morphological skeleton, and redundancy
in this representation is reduced using an algorithm
based on the GST. These skeletons, which are
sparse representations of the bit-planes, are coded
with a combination of different entropy coders partic-
ularly devised for efficient skeleton coding.

The foliowing sections give the proof of the GST
and details of the coding algorithm along with pro-
cessed examples. Section 2 introduces the skeleton
and presents the GST. Section 3 describes the
modified morphological skeleton. In section 4,
description of the coding algorithm is given. Experi-
mental resuits are presented in section 5, and a sum-
mary and conclusions in section 6.

Notation: ASB, A®B, AoB, and AeB
denote the basic morphological operations of ero-
sion, dilation, opening, and closing, respectively, of a
set A by the structuring element B. Both A and B
are setsin R2 orin Z2[1).

2. MORPHOLOGICAL SKELETON AND
A GEOMETRIC SAMPLING THEQOREM

Let X be a closed set in R2. The curvature x(p)
at a point p of the boundary oX of the set X is



defined as the inverse of the radius of the largest
disk tangent to dX at p [1]. We assume that the
Convex Hull of X€ is equal to R? (a necessary con-
dition for the exact reconstruction of X [1-4]) and that
k() of @X is well defined everywhere, except at a
finite number of points, where it may have only one
sided tangents. We denote these set of boundary
points by I'tX), I'tX') ¢ 6X. The subset of points in
I'(X) for which the correspondent interior angle is
concave (e.g., the points B, F in Figure 1) is
denoted by £(X'). We also define Y, = XopB, where
B is the unit disk in R2.

Fig. 1: Points with no well defined curvature:
, I'X)={A,B,...G}, §X)=(B.F}.

Let D(x, p) be a closed disk of center x and
radius p 2 0 (in a two-dimensional Euclidian space).
Then, a maximal disk in X and the skeleton of X are
defined as follows: _

Maximal Disk: A maximal disk D(y, p,) is one
which is included in the object X, but not included in
any otherdisk in X.

Skeleton in R% The skeleton W(X) of an object
Xc R?is defined as the family of centers of all maxi-
mal disks in X [1-4, 7].

If y e ¥(X), then D (y,p,) denotes its corresponding
maximal disk with radius p,, i.e. py is the Euclidian
distance from y to dX.

It is well known [1-4] that under the assumed condi-
tions, X can be reconstructed from the set ¥(X)
together with the set of radii p,, i.e. the skeleton
pairs (y.py):

= D (v,
X we%v’m (w.py) 1)

Not all skeleton points are necessarily needed
for exact reconstruction. We are interested in a set
of points ¥, (X) ¢ W(X), denoted as the minimal
skeleton, which guarantees exact reconstruction of
X, and which satisfies the condition that X can not
be recovered from any subset of ¥, (X). Such a set
exists, because in the worst case V¥, (X)=¥X).
Similarly, we are interested in the minimal set for
recovering oX.

For demonstration, Figure 2 shows a set in R2 with
its skeleton. In this case just the two marked points
{a, b}, together with their corresponding radii
{p. .pp}. are sufficient for object reconstruction.

Fig. 2: Example of skeleton (dashed line) and minimal
skeleton (points a, b): ¥, (X)={a,b}.

Before proceeding, we define the following:
Singular Point: A skeleton point s, se ¥(X), is a
singular point if and only if there exists a point p in
X such that the maximal disk D (s ,p, ) is the only one
which contains it.

Also, for any point s & T(X)\E(X), s is singular with
maximal disk D (s ,p, ) where p, =0 (see for example
points A and D in Figure 1)

Let S(X) be the unique set of singular points in X
and let X" the minimal reconstruction defined by:

='se%$‘_)LX) D(is,p,) ., X X (2)

Boundary Singular Point: Similarly, we say that a
point xe y{X) is a boundary singular point, it and
only if there exists a point p on dX (the boundary of
X)) such that the maximal disk D (x,p,) is the only
one which contains it.

In the_case of the set in Figure 2, the two
marked points a, b are singular.and ¥,,, (X) =S (X).
The importance of singular points is evident from this
example and from the following theorems.

Lemma 1: All singular points are in ¥, (X) i.e.,
SX)c¥.X).

Proof: This is a direct consequence from the
definition of a singular point. |

T - . a

Theorem 1: xe X is a boundary smgular point if
and only if x is a singular point.

Proof:

= From the definitions, if x is boundary singular,
then x is singular.

< Given a singular point x, we have to prove that
x is boundary singuiar:
For all ze ¥(X), D(z,p,)noX =D (Figure 3). If
D(z,p,), with ze ¥(X) and p,>0, touches 9X



only at points with not well defined curvature,
i.e. D(z,p,)"dX c&(X); then it can not be a
singular point. Therefore, for any singular point
xe Y(X), its corresponding maximal disk
D (x ,p.) touches the object boundary at least at
one point A,, such that A, € D (x,p, )X and

A, e aX\E(X). It we prove that D (x,p.)is the

only maximal disk which contributes to A, , then
x is also a boundary singular point.

Lets prove now that D (x,p,.) is the only maximal
disk which touches X at A_, when (4, ) is well
defined. We have to show that there is no other
ye YX), x#y, such that A, e D(y,p,)noX.
Suppose such a y do exists. Since the curva-
ture x(4,) is well defined, then both D(x,p,)
and D(y.,p,) are tangent to dX at A,; and
x.y € Ny, where N, stands for the normal to
39X at a point pe 09X with x(p) well defined.
This means that D(x.,p.) and D(y.,p,) are
nested disks (see Figure 3), a contradiction to
the hypothesis that they are maximal disks
(x,y e WX)). Then, D(x,p,) is the only maxi-
mal disk which contains A e dX, and x is a
boundary singutar point.

O

This theorem means that a singuiar skeleton
point \contributes to X if and only if it contributes to
90X . Therefore, when checking for the singularity of a
point, just the intersection points of its corresponding
maximal disk with the set boundary need to be
cheécked.

Fig. 3: Nested circles, only one can be maximal.

Theorem 2 - The Geometric Sampling Theorem:

a) X" covers all the X boundary (9X), except for a
finite number of points.

b) The subset of S(X) containing singular points
with corresponding radii r2p, is enough for
reconstruction of ail of ¥, boundary, except fora
finite number of points (these points are the
same as in the first part of the theorem).

Proof:

a) Any boundary point A, e 0X belongs at least to
one maximal disk D (x,p.) (egn. (1)), xe ¥(X).

In the proof of Thm. 1 we showed that if x(4,) is
well defined, then x is a singutar point (or a
boundary singular point). Therefore, X" covers
at least all the boundary points with well defined
curvature, i.e. - dX\&(X), and the number of
uncovered points is at most #&(X) < o,
For coverage of the uncovered points (a subset
" of (X)), the number of skeleton points that must
be added is less or equal than {#&(X)]/2.
b) This is a direct consequence from the first part
of the theorem and from the fact that
Y,= D (v.py)- -

0= v
ve ¥Y(X). py2p

]

From the above two theorems we see the impor-
tance of the unique set S (X)) for the reconstruction of

X, since each singular point contributes to X .and

almost all of 0X is covered by the maximal disks of
S (X). By the second part of Thm. 2 one is motivated
to denote the momhological operation XopB as a
geometric low pass fiter, in analogy to the filter
used in classical signal processing, with band-width
being replaced here by the inverse of the radii of
maximal disk.

When X is opened by pB (yielding Y ), arcs of the
skeleton are eliminated. Lower bounds on the length
of these arcs are given in (8].

For an extension of the theorems, and an extended
analysis of the analogy between this theorems and
the classical Sampling Theorem, see {8].

3. MORPHOLOGICAL SKELETON
OF DISCRETE IMAGES

The skeleton SKB(X) ot a discrete set X (a
subset in Z2) can be defined in a similar way in which
the skeleton of a continuous set is defined. This
skeleton is defined in relation with a discrete struc-
turing element B, which replaces the disk used in
the continuous case. Thus, the discrete skeleton is
defined as follows:

Maximal Structuring Element: If (nB), represents
the subset obtained after dilating B n-times and
shifting the result by z, then the element (nB), is
maximal if and only if it is included in X and there is
no other (mB),, m>n, such that (rB),<(mB),c X
(1, 5]

Skeleton in Z2: The skeleton SKB(X) of a set
X< Z2is detined as the family of centers of all maxi-
mal structuring elements in X [5].

Lantuejoul {7] proved that the skeleton can be
computed via basic morphological operations. We
present the discrete version of the algorithm, as was



used by Maragos and Schafer in 5] for binary image
coding. Assume X to be a discrete set, and B a
discrete structuring element (i.e. sets in 22, then the
skeleton SKB (X) is given by [1, 5:

SKB (X )=Nk2) SAx) 3)
where
SB(X)=(X©enB)-(X6nB)oB ,n=0,..NB) (4)

The subset SE(X) is called the n-th skeleton subset
of X, computed with the structuring element B, and
N(B)=max{n :X©nB=»J}. The n-th skeleton
subset S2(X) contains all the points xe X (and only
those points), such that the element (nB), is maxi-
malin X.

Opened versions of X can be obtained via:
' - N(@®B) . '
XokB = v SE(X)® nB NG
ne

where 0<k <N(B). Hence, if k=0 the original
image is reconstructed.

The morphological skeleton just presented is
computed via the structuring element B, with invari-
ant shape and size. We propose next a new morpho-
logical skeleton, for which the structuring element
size increases with subsequent skeleton steps (n)
(the shape remains unchanged). This new represen-
tation is motivated by the fact that when larger struc-
turing elements are used, less skeleton subsets are
obtained; enabling this way a higher compression
ratio (see next section). In the modified morphologi-
cal skeleton of X, each skeleton subset is computed
with the largest possible structuring element; i.e. an
element kB such that if Y=XokB, then YokB =Y
and Yo (k+1)B ¢ Y. From equation (5) we see the
following:

X =XoB +S§(X) (6)
and
XoB =Xo02B +S¥(X)®B %)

Now, we can decompose Xo2B in a different way:
N(2B)
Xo2B = U S2B(X)® n2B = (8)
ﬂ:_ [ — -

=Xo4B + S (X)® 2B

Where S,28(X), n =1,2, --+, N(2B), are the skele-
ton subsets of X computed with the structuring ele-
ment 28 (note that the union goes from n=1).

We therefore can rewrite eqn. (6) as:
X =Xo4B +S2B(X)® 2B +SB(X)® B +SE(X)(9)
Subsequently, Xo 4B can be decomposed using 4B

as a structuring element and this procedure can be
continued using at each step a twice as big structur-

ing element as in the previous step. We obtain this
way the modified morphological skeleton MS (X)
{8]:

Nu(B)
MSE0= U M, (X) (10
where
MyX) = SEX) (112)
M,(X) = 8Br)(X) , n=1,.., NyB)(11b)
B<n>={—§f—:?§ vt Ny@) (19

The skeleton subset M, (X) contains all the points
xe X (and only those points) such that the element
(2*-'B), is maximal in X; and N (B)=max
{n :X©2"'B#2). We observe that with this
modified momhological skeleton, less skeleton sub-
sets are obtained due to the use of an increasing size
structuring / element, since
Ny (B) =TlogN (B)] < N(B).

The image can be reconstructed from the modified
morphological skeleton as follows:

Ny (B)
XoB(k) = Zk M, (X)® B (n) (12)

where 0 <k <Ny (B). Hence, if £ =0 the original
image is reconstructed (see eq. (11)). More details
about this modified morphological skeleton are given
in [8].

4. IMAGE CODING

Figure 4 presents the block diagram of the cod-
ing algorithm. We describe in this section each of
the stages. More details can be found in [6].

The image is first pre-processed in order to
represent it in a new form, more appropriate for our
coding method. The first step in the pre-processing
stage reduces the number of bit planes from 8 to 4
via the Floyd-Steinberg error diffusion algorithm [9].
Wwith this technique we eliminate the least significant
bit-planes of the 8-bit image, which due to their
random-like structure, are typically difficuit to
compress. Thus, using 4 bit planes with error diffu-
sion, the compression ratio is' increased with no
significant degradation. Subsequently, pixels in these
bit-plane are represented in Gray-code, obtaining
more uniform bit-pianes which improves the coding
algorithm performance.

Each one of the four bit-planes obtained after
the pre-processing stage is represented by means of
the modified morphological skeleton described in



the previous section (equations (10)-(12)). We use a
3x3 square as the basic structuring element (B).
Usually, no more than 6 skeleton subsets were
obtained for the different bit-planes (V3 (B)=5, see
eqn. (10)).

The modified morphological skeleton is still a
redundant representation in such a way that some
skeleton points can be removed and exact recon-
struction of the image from the reduced morphologi-
cal skeleton can still be obtained. Our approach for
removing redundant skeleton points is based on the
algorithm presented in [5] and improved by using
results from the Geometric Sampling Theorem
described in the previous section. A dual geometric
sampling theorem for discrete images does not exist.
However, we found that the singular points of a
discrete skeleton (defined in a similar way as the
singular points of a continuous one), are not sufficient
for exact image reconstruction, but they do recon-
struct most of it (typically close to 90%). Therefore,
the set of singular points is almost sufficient; and we
have to care about the "optimal® coverage of only a
small part of the image (typically 10%) instead of the
optimal coverage of the whole image as needed in
[5]. The resulting search space is much smaller than
the original one, and a solution closer to the optimal
one can be found with simpler methods. We decided
to select the skeleton points, needed in addition to
the singular points, according to the contribution of
their corresponding maximal element to the partial
reconstructed image (see equations (1), (5), and
(12)). We denote by M, (X) the reduced skeleton
subset obtained from M (X). We obtain this way
that each of the bit-planes is being completely
represented by its reduced modified morphological
skeleton (RMMS).

Before proceeding with coding the RMMS, we point
out that simulation results suggest that a discrete
version of Thm. 1 may be valid. Therefore, when
checking for the singularity of a point, it is enough to
check its boundary contribution, thereby reducing the
computational complexity of the presented skeleton
reduction approach (this complexity is linear in the
maximal structuring element size instead of qua-
dratic as in {5]).

For coding the RMMS rebr-egéntation of each

bit-plane, each skeleton subset M, (X) is coded as a
binary image (these are very sparse binary images).
First, a Huffman code of the number of consecutive
empty lines (lines having no skeleton points) is gen-
erated, from which the exact position of non-empty
lines can be pointed out. The position of each skele-
ton point in its corresponding non-empty line, is
coded by an Elias code as proposed in {5]. The
binary output of the Elias code (of ail skeleton sub-
sets combined) is compressed with the Ziv-Lempel
universal coding algorithm.

This coding strategy was found to be very efficient for
RMMS coding, because of their special structure as
mentioned above. An improvement in the compres-
sion ratio was obtained using the RMMS representa-
tion instead of the original morphological skeleton
representation proposed by Maragos and Schafer [5],
mainly due to the reduction in the amount of bits
needed for coding the empty lines.

By introducing geometrical errors in the different

bit-planes, the compression ratio can be increased.
These errors correspond to the omission of RMMS
subsets M, (X), n <r SNy (B)+1, where r is
selected according to the bit-plane importance (for
more significant bit-planes, r is small or even zero);
obtaining with this method smoothed versions of the
form Xo B (r) of the bit-planes (equation {12)). If just
the smoothed bit-plane is coded, missing points of X
(XoB({r) ¢ X) would appear in the reconstruction as
part of the background. This causes considerable
degradation of the subjective image quality. To cir-
cumvent this problem, we code the smoothed ver-
sions of both X and’its complement, X¢, and subse-
quently fill-in randomly the undefined regions -or
"holes” (Fig. 5d). :
Skeleton subsets that were initially omited can be
progressively added in subsequent steps until the
image quality is satisfactory, or the desired bit-rate is
achieved. We denote this procedure as Geometric
Progressive Transmission [6].

5. SIMULATION RESULTS

To evaluate the performance of the proposed
coding scheme, it was simulated on a SUN 4/260,
using a Gould IP8500 image display system. A
woman'’s head and shoulder image ( "Lena” ) of size
512x512 pixels was used as a test image (for more
examples-see [8]). Performance of the algorithm is
evaluated based only on the subjective quality of the
images.

Fig. 5a shows the original image. Fig. Sb shows
the image represented using only four bit-planes with
error-diffusion. This image was coded (using the
RMMS) at the rate of 0.35 bits per pixel (b/p), and
represents what we call the "Four-bit error-free
image". The same picture, when . represented via the
morphological skeleton proposed in [5] (instead of
the RMMS) is coded at the rate of 0.40 b/p. Fig. 5¢
shows an image that was initially filtered with a 3x3
median fiiter followed by 4-bit error-diffusion. This
image was coded at 0.29 b/p. Fig. 5d shows the
reconstruction of an image in which the least
significant bit-plane (of the 4-bit error-diffusion
representation) was coded with no skeleton points of
radii zero; both the image and the background were
coded and “holes” were filled randomly (the remain-
ing bit-planes were coded error-free). This image
required 0.29 b/p.



6. SUMMARY AND CONCLUSIONS

In this paper a Geometric Sampling Theorem
(GST) is presented. The theorem deais with the
reconstruction of the boundary of a continuous two
level image from a unique subset of points of its
skeleton representation. This set of points, called
singular points, was found to play an important role
in the skeleton representation of discrete binary-
image as well. Based on this fact, an efficient algo-
rthm for morphological skeleton reduction was pro-
posed.

A modified morphblogical skeleton for bihéryr

image representation is also presented. This skeleton
is computed with an increasing size structuring ele-
ment. This way, the number of skeleton subsets is
reduced and therefore the compression ratio is
increased.

‘In the second part of the paper, an approach for
morphological image coding was described. The
image is first reduced from 8-bits to 4-bits via an
error-diffusion algorithm, and the pixels are subse-
quently converted to Gray-code. The resulting bit-
planes are represented via the modified morpholog-
ical skeleton. Redundancy in the representation is
reduced via an algorithm which is based on the GST.
An entropy coding scheme was particularly devised
for efficient coding of these skeletons. This coding
scheme is quite different from morphological
approaches which are based on image segmentation
and labeling (e.g., [10]). Also, the error introduced by
geometric deformations is in general more pleasant
to the observer than the blocking or quantization
errors introduced by standard image coding aigo-
rithms.
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