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ABSTRACT

In this work a robust method for the identification of a class of
point spread functions (PSF) from blurred and noisy images is presented.
It is assum@d that the original image is passed through a linear two-
dimensional blurring system and that wide-band noise is added to the
observed image. Two types of blurring are considered: motion blur and
out-of-focus viur.

The fact that the spectra of these blurring functions have periodic
zcros, is the basis of an already known blur identification method. This
periodicity is manifested by distinct negative point or circle impulses in
thc cepstral domain. The location of these impulses allows the
identification of the parameters of the blur functions of the type
considered. However, this method is found to be highly sensitive (o
noisc. We propose therefore the following improvements to the above
basic method: First, adding a preprocessing stage for noise reduction,
using a modified spectral subtraction approach, and second, applying an
adaptive comb-like window (lifter) in the cepstral domain to enhance the
blur parameter identification,

The proposed algorithm is found to provide adequate identification
of blur function parameters from noisy blurred images with signal-to-
noise ratio down to GdB for motion blur and 3dB for out-of-focus blur,
as compared 10 20 dB for the onginal method.

1. INTRODUCTION

The problem of restoring noisy images has been a difficult
challenge for many years and is addressed in numerous publications.
The main trends and methods in restoration can be found in any alrcady
“classic” book [1].

The major part of image restoration algorithms require some
knowledge about the degradation process and associaled parameters.
These include the classical Wicner filter restoration techniques {1], the
more recent iterative restoration algorithms [15,16}, and others [9,17)].

The problem is that the information required is not always
available and that the restoration resuits were found to be highly
dependent on the blurring system model used, and on the accuracy by
which its paramcters are identified from the degraded image. The
approaches taken in many image restoration works can be put into one of
the following two categories:

a. Identification of the PSF paramelers in order 10 use it later in one
of the known restoration algorithms.

b.  Incorporation of the identification proccdure in the restoration
algorithm.

The work of Gennery (2] who tried (o identify the PSF parameters
in the spectral domain, the work of Mitre and Fleuret {7), for
identification both in the space and spectral domains, and the works by
Cole (6} and Cannon [3,4] for identification in the log-spectral and
cepstral domains, all fall in the first category. The works of Biemond
and Putien [12) and Tekalp and Kaufman [10,11] can be considered as
members of the second category. The principal attitude in [10,11,12}) is
to assume that the degraded image can be modeled as a product of an
ARMA system where the autoregressive part represents the image, and
the moving average pan rcpresents the degradation process.

Cooke and Dorrani [8] assume a new model for the degraded

imaged formation and propose an iterative process for combined
dentification and restoration, thus also belonging to the second category.
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The main drawback of all the above mentioned methods is the high
sensitivity to additive noise. The relatively simple methods of f2) and
[7} are restricted to very high signal-to-noise ratios (SNR) of the
degraded imaze under test. In papers [6,8,10,12}, the lowest SNR

reported 1s 20dB. This was also the result in our examination ol

Cannon's method {4].

In this paper we present a robust method for ideniifying the PSF
parameters from motion and out-of-focus blurred images with additive
noise, which is panly based on the approach in [4].

2. BLURRING-SYSTEM MODEL

We assume that the image acquisition process is as depicted in Fig,
I with a linear space-invariant imaging system.

Mathematically, it can be described as follows:

B, y)=f(x ., y)xh(x,y)+n,y) (1
wh_ere: f(x,y)- original image; g (x ,¥) - observed image; h(x ,y) -
point-spread-function of the imaging system; 21(x ,y) - additive noise;
* - convolution operator.

In the Fourier transform domain, equation (1) takes the torm:

Guy)=Fwy) Huy)+Nu,v) (2

2.1 Blur Functions

As noted above, two types of blur functions are dealt with in this
paper: motion blur, caused by relative motion between the object and the
camera along the x axis during exposure time, and out-of-focus blur,
Caused by mislocation of the camera’s lens having a circular aperture,

For motion blur, & (x ,y) is given by a one dimensional rectangle:

1 d___d
4 -——2- <x S? ; y=0

hx.y)= (M
0 otherwise

where d is the “blur-length” and is proporional to the relative velocily
between the camerz and the object and 10 the film exposure time. The
Fourier transform of 4 (x , y ) in this case is:
sin (nd:¢) .
Hu,v)=——" =ginc (rdu
wdit (rdu) h
The amplitude of H (1 ,v) is characterized by periodic zeros on the i
axis, which occur at

u=“_rl,:t£,i 3
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For out-of-focus blur, & (x , y) is assumed here 1o be given by the
cylinder;

(5

UrR? x?+y2<R?
hix,y)= (6)
0 otherwise
where R is the “blur radius” and is proporuona! 1o the extent of
defocussing. The Fourier transform of 4 (x | v ) in this casc is:

H(u,v)=J(7Rr)rRr (7)

2

ore rl= 2 i 3 ] ;
where r“=u“+v*- and Jy( ) is the fint order Bessel function. The



amplitude of H (1 ,v) is characterized by “almost-periodic™ circles of
radius r, at which H (u ,v) takes the value zero. This occurs at values
of r saiisfying:

2nRr =3.83, 7.02, 10.2 13.3, 16.5, - (8)

It is secn therefore that these two types of blurs are each characterized by
a PSF which rcquires only a single parameter for ils complete
determination.

2.2 Cepstral Representation

The cepstral representation of the blur function /ii{x ,y) is given
by:

Cp®,q)=F ' (loglH @ ,v)I} o

where F 7! denotes the inverse Fourier transform. Since 'H (i ,v)! is
real and even, sois C, (D , q).

For motion blur, it is recalled that the distance between adjacent
zeros of the blur function spectrum is g Representing this function in

the cepsiral domain results in a distinct negative pulse at a distance d
from the origin and replicas of this pulse at integer multiples of 4.

For our-of-focus blur H (u ,v) has “almost-periodic” circles of
zero value where the distances between adjacent circles is approximately
1/(2R). Representation of the blur function in the cepstral domain gives
a distinct circle of negative amplitude with a radius of approximately 2R
and replicas of this circle with radii which are approximately multiples
of 2R.

3. CANNON’S APPROACH

In his works {3,4], Cannon found out that the noise added to the
blurred image is the main cause for the "disappearance” of zeros of the
PSF in the spectral domain and therefore prevents their identification in
the cepstral domain. He proposed therefore the following scheme:
The assumption that the image and the noise are samples of a stationary
random process gives, from (2):

Po(u,v)=Pru,v) |H(@u ,v)I2+P,(u,v) (10)

where Pg (u,v) Pf («,v), and P, (u ,v) denote the power spectra of
g(x,y)f(x,y) and n(x,y), respectively.

An estimate of Pg (# ,v) can be obtained using Welch's algorithm
[14]. This is done by dividing the image into sub-images, multiplying
each sub-image by a 2-D Hamming window, computing its squared
magnitude Fourier transform (modified periodogram), and averaging
over all sub-images, resulting in

Pou v)=Ppu,v)- 1H@u,v)*+ P, u,v) an

where the overbar indicates the effect of the above process on the
original power spectra.

Assuming that the noise is white, P,(u ,v) converges (as the
number of sub-images grows) to a constant which equals to the noise
vanance. It is evident thal if the noise variance is sufficiently small,
conspicuous negative peaks in the cepstral domain can be expected at
locations which are multiples of the blur paramelers, as explained above,
and they will dominaic the form of Cg.(p ,g)- the cepsiral
representation of P;(u ,v). Identification can thus be achieved by a
carcful examination of the one-dimensional sequence Cg.(p ,0) in the
cepstral domain.

As was mentioned earlier, the main drawback of this algorithm is
its high sensilivily to additive noise. The main goal of this paper is
therefore to modify the above approach and make it more robust in
presence of high level noise. The first step in our proposed algorithm is
noise reduction by spectral subtraction - as claborated next.

algorithm is given in [13]. Here we bnefly present the main result. Let
b(x ,y) denote the blurred only (noise free) image. Hence cquation (1)
takes the form:

g y)=blx,y)+n(x,y) (12)
Estimation of the Fourer transform of b{(x,y), B ,v), from
G (u,v) by using the power spectrum method [1), results in the

following formulation of the speciral subtraction algorithm {13}):

|l§(u,v)|=[|G(u,v)|2——a I’,‘(lt.\z)]”" HIGw . v 2a Po(u,v)
1Bu . V)l =¢ (13)
<Bu,v)=<Gu,v)

otherwise

where @ is a coefficient used to control the subtraction extent and € is a
small constant used to avoid numerical difficuliies when taking the
logarithm of (13).

The method of estimating P,{(u ,v) is explained in Section S.
Note that in our application no use is made of the phase, as we need not
reconstruct here the enhanced image.

Because of image nonstationarity, it is common to apply the
spectral subtraction technique to sub-images of the given image and then
recombing the enhanced sub-images lo obtain the restored image. It
appears therefore that the integration of this enhancement technique with
the spectral averaging of sub-images used in Cannon'’s algorithm can be
done quite efficiently as depicted in Fig. 2. However, the performance
of this approach for blur parametcr identification, as well as some other
integration approaches we examined, was found to be lower than using
the spectral subtraction approach on the whole image, as described in
Section 5. It should be emphasized that since the goal here is not the
restoration of the image but the extraction of the blur function parameter,
our judgement of the noise reduction technique applied, is based only on
the ability to identify the blur parameters and not on the enhancement of
the image.

5. ALGORITHM DESCRIPTION

The proposed algorithm has two stages. In the first stage a form of
the spectral subtraction method is employed for noise reduction, In the
second stage the enhanced spectral magnitude function is transformed to
the cepstral domain and the identification procedure is completed using
an adaptive "comb-like” window (lifter).

5.1 Stage I: Nuise Reduction

The noise reduction procedure in this stage follows the spectral
subtraction formulation given in (13) with ¢ =1 (the value of & was
carefully sclected to enhance performance), but is applied to the whole
image, without dividing it into sub-images.

It remains to get a good estimate of P, (1 ,v). This is done here
by using a "median-complement” image, defined below, 10 get an
estimate of the noise, ri(x ,y), from which P, (1t ,v) is computed. A
median filier kl] is defined as follows:

Let {a, },,zzlﬂ, be an input sequence of length 2K+1. {a, } is
reordcd to gel the sequence { b, } 3’__‘{", according 1o the law,

by, 2b,, & ny>ny )
then:
median { a, ) X =by,, (15)

lLe., the median is given by the center clement of the rank ordered
sequence { b, }.
A "median-complement” filter is thus defined by:

median—complement { g, } 12"(" =dyg, ~bi. (16)

Applying this procedure to the problem at hand results in:

A(x ,y)=median—complement { g(x,y) } (17)
4. NOISE REDUCTION BY SPECTRAL SUBTRACTION and we let
A detailed development and description of the spectral subtraction f;,, (u,v)=P (u,v)= IA}(u )2 (18)
2.2
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where 1\7(u ,v) is the Fourier transform of i (x ,y ). The filter used was
a one-dimensional median filier of length 3, i.¢c., K =1.

The block diagram of this stage appears in Fig. 3a. Note that a 2-D
Hamming window is used prior to the Fourier transformation.

5.2 Stage 11: Blur Parameter Identification

We have seen already that the cepstral representation of the PSF is
dominating the form of Cy:(p, q) — the cepstral representation of the
blurred image. In the motion-blur case, a distinct negative pulse appears
on the p axis. In the out-of-focus blur case, a distinct circle with
negative values appears in this domain, crossing the p axis.

Although it scems sufficient to examine the sequence Cy(p,0)
and look for a negative dominam pulse, in the presence of noise this was
found to be effective only for the motion-blur case. For out-of-focus blur
the following approach is taken:

First, C;(p,q) is converted 10 a polar coordinate representation to
get Cp(r, 6). Then, the sequence C;(r)is created by averaging over 6:

2n

C;) =5 [ Ci(r.0)a8 (19)
0

Thus, all the information available along a circle of some radius rg in

Cy;(p,q)is concentrated at the single point Cy(rg).

Since a one-dimensional sequence is actually used for idemifying
the blur parameter. We examined ways for reducing the amount of
computations. For the motion blur case this is quite simple, since by the
“‘projection-slice” theorem {5},

Cyp,0)=F (su)) (20
where
s)= [ log|B(u,v)12dv @y

ie., C;(p,0) can be obtained from the inverse 1-D Fourier Transform of
the 1-D sequence obtained by averaging log!B (u,v)l 2 along the
columns (following, of course, discretization of the (u,v) frequency
axes).

For the out-of-focus case, an attempt 1o apply a similar theorem in
polar coordinates (1o obtain Cj(r)) did not lead to the sought
simplification since a Hankel transform is involved, which is not simple
to compute. For convenience of the pursuing development we denote the
1-D sequence obtained in both cases C; (m).

We mentoned before that the desired negative pulse in the cepstral
examined sequence is accompanied by its replicas and other pulses
which result from the additive noise and the image itsclf.

Usually these pulses are of lower amplitudes than the desired first
pulse, but sometimes, because of the additive noise, this is not the case
and mis-identification occurs. The following algorithm uses a new
criterion in order to suppress undesired negative pulses and to enhance
the desired one.

Every point in the cepstral sequence C b~(m) is assigned a new
value according to:

0 if C;,m)20
Clm)= I . 2
ICsm)UIL 5 € (% if Cymy<o @D
M leA
where:
m  —the examined point index.
A —the set of all the points in Cy;( - ) having a negative value, and:

— are of index greater than 3
- do not coincide with the examined point
— are not within the region of 1 of an integer multiple of the mi.

M, - total number of points in 4 .

It is noted that every point/ € A can be considered as a
“disturbance” when the point m is examined, since it is negative and is
not a replica of m. Therefore, the denominator of C (m ) contains the
“average disiurbance” related to this point.

Since C(m) is computed for all points in the cepstral sequence
Cy(m), the algorithm actually scans this sequence with an adaptive
‘comb-like’ window (lifter) with pass- and stop-bands which are
maiched to every point in the sequence,

In Fig. 3 — a graphic descripiion of the *comb’ window is shown.

The following threc cases are of inicrest:

a. m is the point of the desired pulse - in this case the integer replicas
of m will not take pant in the “disturbance” computation. All other
points in A contain only "rundom’ noise and C (m ) will get a high
positive value.

b.  m coincides with one of the desired-pulse replicas - in this case A
will contain the desired pulse, some of its replicas and the other
'random’ noise points. C /.11 ) will thus get a low value.

C. m is some point that does not fit the description in the former two
cases — in this case the “disiurbance™ consists of the desired pulse
and most of its replicas beside some other ‘random’ noise points.
Thus C (m ) will get ever. u lower value than in case b.

The final stage for identification is a peak-detector activated on the
sequence C (m).

A block diagram of this stuze appears in Fig. 3b.

6. RESULTS

An experiment was conducted in which pictures were synthetically
degraded by a computer, where the extent of blur and noise corruption
was completely controllable.

The algorithm was tested for various values of the blur parameters.
For each blur type and blur parumelter, noise was added in order to
determine the minimum value of input SNR that siill allows
idenuification of the blur parameier.

For motion-blur, the parameter d (blur length) was given values
such as 8, 11, 19, ... pixels and many others. For out-of-focus blur, the
blur radius R was given various values, for example R=8,12, ... and
more.

The Signal-t0-noise Ratio is defined here as the ratio of the signal
variance 10 the noise varance. Examples of the resulis obtained in the
experiment appear in table |:

Table 1: Minimum SNR Required for Blur Parameter Identitication

Blur Type Motion | Motion | Defocus | Defocus [
& Exient —» | d=1] a=19 R=8 R=12
SNR(dB]— | 07 .04 3.1 28|

7. CONCLUSIONS

The proposed algorithm combines processing in the space, spectral
and cepstral domains, taking advuntage of the signal characteristics in
each domain, and results in adequate ideniification of the blurring
function parameter from noisy blurred images with SNR of down 10
0dB, for motion blur, and 3dB for out-of-focus blur. In previous works
this was achicved only with SNR of over 20dB.
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