
1/32

Robust Fitting of 2D Curves and 3D Surfaces by

Implicit Polynomials

Amir Helzer, Meir Barzohar and David Malah

Department of Electrical Engineering

Technion- Israel Institute of Technology, Haifa 32000, Israel

ahelzer@virata.com, meirb@envision.co.il, malah@ee.technion.ac.il

Index Terms: Implicit polynomials, zero set sensitivity, curve and surface fitting, robust
fitting, coefficient quantization.

Abstract

This work deals with fitting 2D and 3D implicit polynomials (IPs) to 2D curves and 3D surfaces,

respectively. The zero-set of the polynomial is determined by the IP coefficients and describes

the data. The polynomial fitting algorithms presented in this paper aim at producing polynomials

that are robust to coefficient errors. Special emphasis is given here to errors due to coefficient

quantization. The development of the algorithms begins with an analysis of zero-set errors

caused by coefficient errors. The result of this analysis provides means for evaluating the

performance of existing fitting algorithms and for the development of new algorithms that yield

more stable polynomials. We also show that although the proposed algorithms are designed to be

robust to coefficient errors, they also produce tighter fits than the other algorithms examined,

even when the coefficients are practically unquantized.

gitta
CCIT Report #406 December 2002

2/32

1 Introduction

Implicit polynomials (IP) have long been introduced for fitting 2D curves and 3D surfaces

[1,2,3]. The ability to efficiently describe complicated boundaries using the coefficients of

implicit polynomials is attractive for applications in the fields of object recognition and pose

estimation [4,5,6,7], coding [8], boundary estimation from intensity/color images [9], and

computer graphics [10]. The existence of geometric invariants [6,7,11] has made implicit

polynomials especially appealing for the first application.

In all the applications involving implicit polynomials, the basic and most desired properties

are tight fitting and stability. Besides a tight fit, the curve described by an IP must be stable and

not change much when the polynomial coefficients change only slightly, like when the

coefficients are represented by a limited number of bits. These requirements are the basis for the

polynomial-fitting algorithms described in this paper.

In recent years, the subject of implicit polynomial fitting has seen much progress - beginning

with the classical least-squares (LS) fitting algorithm [1] and followed by the 3L fitting

algorithm [12,13] and others [14-18]. The classical least-squares fitting algorithm suffers from a

very high sensitivity to coefficient errors. This high sensitivity is attributed to insufficient

constraining that results in too many degrees of freedom. To alleviate the sensitivity problem,

the 3L fitting-algorithm introduces additional constraints, which are generated from the original

data via expansion and shrinking. This solution provides much improved performance, in terms

of stability and tightness, as compared to the earlier LS algorithm. However, it still suffers from

numerical problems as a result of expanding and shrinking discrete data. This algorithm was

further improved in [17] by basing the fitting on ridge regression.

In our study, we achieve improved fitting stability by considering the sensitivity of the

polynomial coefficients to quantization. Our work actually originated from a coding application

[8], where our concern was that high sensitivity of the coefficients results in a higher bit rate.

3/32

Therefore, reducing the sensitivity as much as possible was crucial. To accomplish this goal, we

investigated the sensitivity of zero-set points to coefficient quantization. We developed a

sensitivity function, which evaluates the zero-set errors due to small changes in coefficient

values. Having developed this sensitivity function, it became possible to analyze the error

properties of existing algorithms (classical least-squares and 3L) and to develop our own fitting

algorithms, which minimize the sensitivity to coefficient quantization. The sensitivity analysis

indicates that the sensitivity is controlled by two attributes: The gradient of the polynomial at the

zero-set point, and the value of its monomial1. We noticed that earlier work dealt only with the

gradient, without relating to the value of the monomial. We show that the minimization of the

value of the sensitivity function at the data points improves the fitting stability to coefficient

quantization. The proposed algorithms are denoted here as Min-Max and Min-Var algorithms.

Furthermore, we conclude (and demonstrate by simulations) that these algorithms yield tighter

and more robust fitting, even when the coefficients are practically not quantized. Improved

fitting results are especially noticeable when high-order polynomials are used (6th and above).

Thus, the algorithms developed to optimize polynomial fitting for coding turn out to be very

useful for other applications as well.

The layout of this paper is as follows:

Section 2 provides background material on polynomial fitting and outlines the 3L fitting-

algorithm, from which our algorithms evolved. Section 3 provides an analytical tool for

calculating bounds on the variation of zero-sets of implicit polynomials due to small errors in the

polynomial’s coefficients values. Section 4 describes the development of the proposed fitting

algorithms. Section 5 presents simulation results in comparing the proposed algorithms with the

3L algorithm. Section 6 summarizes and concludes the paper.

1 See (1) in section 2.1.

4/32

2 Background

In this section we provide a brief overview of implicit polynomials fitting.

2.1 Fitting 2D implicit polynomials to curves

The objective of polynomial fitting is to describe data points (object boundary for 2D objects

or surfaces for 3D objects) by the zero-set of a polynomial. That is, the value of the polynomial

should be zero at the location of the data points.

The value of the polynomial at a point (x,y) can be described as the product of two vectors – a

parameter vector (containing the polynomial’s coefficients), and a vector of monomials.

For a dth order polynomial, the monomial vector is defined as:

() () ()[]

[]dddd
r

yxyxyxyxyxyxyx
yxpyxpyxp

011110100100
1

,,...,,,...,,,
,,...,,,

−−

==
 (1)

where ()() 2/21 ++= ddr and the parameter vector is],...,,[21 raaaa = .

The value of the polynomial described by a at location ()yx, is:

 () ()yxpayxP T
a ,, = (2)

The fitting problem is therefore to find a parameter vector a that leads to a polynomial that best

fits the data under a criterion to be specified. The data set is assumed to contain N points with

coordinates () Nnyx nn ,...,1,, = .

We denote the zero-set of the polynomial defined by the coefficient vector a as:

 () (){ }0,:, == yxPyxZ aa (3)

2.1.1 Overview of the 3L algorithm

The 3L algorithm developed in [12,13] is presented as a linear algorithm for fitting an

implicit polynomial to a data set. The term linear is used by the authors to describe a problem of

the form b aM= , where b is a known vector, M is a known matrix and the vector a needs to

5/32

be calculated. This algorithm produces a result within one pass and no iterative computations are

required. This stands in contrast to previous fitting algorithms [1,2], which require an iterative

solution, with unproven convergence properties.

The 3L algorithm is based on the construction of two additional data sets that are determined

from the original data set. The two additional data sets are constructed so that one set is internal

and the other is external, relative to the original data set, with a distance d from it (see Fig. 1).

The goal of this algorithm is to find a polynomial that has a value of zero at points belonging to

the original data set, and values of ε and ε− at the internal and external points, respectively. To

achieve this goal, the 3L algorithm uses a least squares solution that minimizes the sum of

squared errors between the required and actual polynomial values at those three data sets.

 Original data set

Distance 'd'

New internal
data set

New external data set

Fig. 1: Original data set (center line) and new internal and external data sets.

Considering the original data set points and the two added sets (internal and external) as a

single set of 3 N points. The first N points are the original data points (points 1,..., N), the

second group of N points (N +1,...,2 N) are the external points, and the third group of N

points (2 N +1,...,3 N) are the internal points.

6/32

Thus, for N original data set points and r polynomial coefficients we obtain N3 equations

with r variables. For the fitting problem to be over-determined, the relation r < 3 N should be

satisfied.

The goal is to minimize the total squared-error E :

()() ()() ()()
2 32 2 2

1 1 2 1

Error w.r.t original points Error w.r.t external points Error w.r.t internal points

, , ,
N N N

T T T
n n n n n n

n n N n N

E a p x y a p x y a p x yε ε
= = + = +

= + + + −∑ ∑ ∑ (4)

The constant ε is some small positive constant. The error E may be written as:

 TeeE = (5)

where the row vector e is given by,

)(bMae −= (6)

The 3N -dimensional vector b and the 3r N× matrix M are defined by:

[]
[]INEX MMMM

b

0

0
=

−= εε
 (7)

with,

() ()[]
() ()[]
() ()[]NN

T
NN

T
IN

NN
T

NN
T

EX

NN
TT

yxpyxpM

yxpyxpM

yxpyxpM

331212

2211

110

,...,

,...,

,...,

++

++

=

=

=

 (8)

The vectors ε and 0 , making up the vector b , are constant row vectors of length N with

elements ε and 0 , respectively.

The least squares (LS) solution for the problem of obtaining a that minimizes E in (5) is:

 () 1−
= TT

LS MMMba (9)

This solution is feasible when the minimization problem is over-determined.

The parameter vector LSa is the best parameter-vector (in the LS-error sense) of a polynomial

whose zero-set approximates the location of the original data set, and whose values on both sides

7/32

of the original data set (at distance ‘d’) are approximately ε± (positive on the outside and

negative on the inside - in the above construction).

3 Sensitivity to coefficient errors

In this section we consider the effect of coefficient quantization on the location of the zero-set

points via a sensitivity function. We begin with a formulation of bounds on the error at the

location of the zero-set points due to coefficients quantization. We than compute these error

bounds for the 3L fitting algorithm presented in section 2.1.1. As a result, we find that the 3L

algorithm can be improved by minimizing not only the distance between the zero-set and the

data points but also the sensitivity of the zero-set to small changes (or errors) in the coefficients.

We denote the improved algorithms as – Min-Max and Min-Var, according to the optimized

property.

3.1 Zero-set sensitivity to parameter changes

When the values of the coefficients in the parameter vector change, the entire zero-set

changes. In this subsection we examine how changes in the parameter values affect the location

of a point on the zero-set. Since the zero-set is continuous, we cannot measure the distance

between two points on it before and after a parameter change. We define therefore the change in

a zero-set point (zd) as the distance between an original zero-set point, ()yx zzz ,= , and the

closest point on the new zero-set, obtained after the change in the parameters.

Let’s define a sensitivity function at a zero-set point ()yx zzz ,= by the following 2 r× matrix:

 () ()
ad

yxzdyxS z
a

,, = (10)

This function expresses the relation between small changes (errors) in the coefficients and small

changes in the location of zero-set points.

8/32

The change in the location of a zero-set point () []YXZ yx εεε =, , resulting from a small change

in the parameters
1

[...]a a ar=δ δ δ , is the product of the error components with the above

sensitivity function2:

 () (), ,z T
Z a ax y S x yε δ≅ (11)

3.1.1 Zero-set sensitivity function in the normal direction

Small changes in the position of zero-set points along a tangent direction move zero-set points

back into the zero-set. Therefore, for the purpose of evaluating zero-set changes, it is sufficient

to examine changes in the direction that is perpendicular (normal) to the zero-set. We denote by

()yxu , the component of ()yxzd , that is locally perpendicular to the zero-set (see Fig. 2):

 () () ()yxPyxzyxu a ,,, ∇⋅= (12)

where ba ⋅ denotes the inner-product between a and b , and ()yxf ,∇ denotes the gradient of

f at ()yx, , and ()yxPa , is the value of the polynomial determined by a at location ()yx, .

Therefore, the sensitivity function of interest here is given by the vector () ()
ad

yxduyxS u
a

,, = , and

denotes the relation between changes in the zero-set in a locally perpendicular direction to the

zero-set, and changes in the coefficient vector.

This function can be written as a product of two independent parts:

 () ()
()
ad

yxdP
yxdP

duyxS a

a

u
a

,
,

, = (13)

The right-hand part of the product in (13) quantifies the change in the value of the polynomial at

()yx, due to a small change in the parameter vector. This part is a vector (has an element for

2 This is a 1st order Taylor expansion approximation. The accuracy of the approximation

depends on the magnitude of the error components.

9/32

each of the elements in a). The left-hand part quantifies the deviation of the zero-set point, in

the direction perpendicular to the zero-set, due to a small change in the value of the polynomial

at ()yx, . This part is a scalar.

We next evaluate each part of the sensitivity function in (13) separately, beginning with the

left-hand part.

The deviation in the location of a zero point in a direction locally perpendicular to the zero-set,

due to a change in the parameter vector, is described in Fig. 2.

Original Position
of zero set point

Shifted Position of
zero-set point

Direction of
the tangent

du

Fig. 2: Location of a zero-set point before and after a small change in the coefficients

For small changes in the parameter vector, the ratio between the position error in the

perpendicular direction, du , and the change in the value of the function at point ()yx, is the

inverse of the gradient magnitude of ()yxPa , :

 () () () () 22 ,,

1
,

1,

∂

∂
+

∂
∂

=
∇

=

y
yxP

x
yxPyxP

yx
dP
du

aa
aa

 (14)

The right-hand part of the sensitivity function in (13), ()
ad

yxdPa , , can be directly calculated from

(2) (i.e., using ()),(, yxpayxP T
a = , where ()yxp , is the monomial vector). The result is:

 ()),(, yxp
ad

yxdPa = . (15)

Using (14) and (15), the sensitivity function in (13) can now be written as:

10/32

 () ()
()yxP

yxpyxS
a

u
a ,

,,
∇

= (16)

3.1.2 Zero-set fitting error bounds and variance

Having obtained (16), we use it to obtain bounds on the fitting errors due to small changes in

the coefficients. The error in the direction perpendicular to the zero-set, ()yxu ,ε , is:

 () () ()
()

()

()
1

,,
, ,

, ,

r

k a
u T T k

u a a a
a a

k
p x yp x y

x y S x y
P x y P x y

== ⋅ = =
∇ ∇

∑ δ
ε δ δ (17)

For a given point ()yx, on the zero set, the maximal error is bounded by:

 ()
()

()

()

()

()

()
1 1 1

max

, , ,
,

, , ,

k k

r r r

k k k
k k k

u
a a a

a ap x y p x y p x y
x y

P x y P x y P x y
= = == ≤ ≤

∇ ∇ ∇

∑ ∑ ∑δ δ
ε δ (18)

where, { }max max
ka=δ δ .

When components of the parameter error vector are independent random variables with zero

mean, the variance of ()yxu ,ε can be calculated by:

 ()()
()

()

()() ()()
()

2

1 1
2 2

var , , var
var ,

, ,

k k

r r

k k
k k

u

a a

a ap x y p x y
x y

P x y P x y
= =

 = =

∇ ∇

∑ ∑δ δ
ε . (19)

Thus, when all the error components have the same variance (() 2var
ka = δδ σ , like when all the

coefficients are quantized with the same word length – in bits), we obtain:

 ()()
()

()

2

2 1
2

,
var ,

,

r

k
k

u

a

p x y
x y

P x y
δε σ ==

∇

∑
 (20)

Since these properties were derived using 1st order approximation of the polynomial value, they

are only valid when the coefficient errors are small.

11/32

3.2 Analysis of the 3L algorithm

In section 3.1 we analyzed the sensitivity of the zero-set to small changes in the coefficient

vector. This analysis holds for points on the zero-set of the implicit polynomial.

When the fitting of an IP to the given data is good, the value of the polynomial at the data points

is close to zero. Thus, instead of checking the sensitivity at points on the zero-set, the sensitivity

may be examined at the data points. This substitution allows the evaluation of the maximal error

resulting from coefficient changes without having to find the zero-set of the fitting polynomial.

Of course, this substitution should be made only when the fitting is sufficiently tight.

Therefore, assuming that the 3L algorithm produces tight fitting, the error for each data set point

n is bounded by (18).

The expansion and shrinking operations used by the 3L algorithm (when done very tightly

about the original data set) is equivalent to differentiation of the polynomial. According to the 3L

algorithm, constant values of the polynomial (ε±) are required at a fixed distance d from the

data set. This implies a requirement for constant derivative values in the direction perpendicular

to the data set, leading to a constant gradient value near the data set points:

(), , 1,2,..., .∇ = =a n nP x y n N
d
ε

The maximal error for each data points is therefore bounded by:

() () () ()max
max

1 1

, , ,
,

r r

u n n k n n k n n
k ka n n

dx y p x y p x y
P x y

δε δ
ε= =

≤ =
∇ ∑ ∑ (21)

It is clear from (21) that the 3L algorithm yields different error bound values at different data

points, depending on the value of the monomial vector ()nn yxp , at each data point. In section 4

we derive algorithms that aim to produce constant error bound values at all the data points.

12/32

4 Stable Fitting Algorithm

In this section we use the results of section 3.1 to construct improved fitting algorithms. Our

goal is to obtain a polynomial with a better zero-set stability than the 3L algorithm, w.r.t.

changes in the coefficients.

We begin by modifying the original 3L algorithm. This modification comprises the

replacement of the expansion and shrinking operations with differentiation of the polynomial.

The motivation for and the description of this modification are presented in section 4.1. In

section 4.2 we continue by modifying the fitting cost function by the polynomial to achieve

desired stability properties. Section 4.3 describes the extension of the results to 3D polynomial

fitting of surfaces.

4.1 Modification of the 3L algorithm

In the 3L algorithm, to achieve a solution that tightly fits the data, it is needed to generate the

internal and external data sets close to the original data points. This implies that for tight fitting

results ε and d (defined in subsection 2.1.1) should approach zero.

If we attempt to satisfy this demand and examine the results of the least squares solution

()()1−
= TT

LS MMMba , we would notice that the factor () 1−TT MMM heads to infinity while b

goes to zero. This means that small numerical errors, resulting from inverting the matrix ()TMM

or from the process of creating the internal and external data sets, will be manifested by large

fitting errors.

Fitting attempts have shown that it is possible to choose the value of the parameter d at about

5% of the geometric size of the object described by the data and obtain stable results. Smaller

values of d (which are desirable for obtaining a tighter fit) yield less stable fitting results.

Choosing large values for the parameter d can also cause problems of the type seen in Fig. 3:

13/32

Original data set

New external
data set

New internal
data set

Fig. 3: Demonstration of possible expansion and shrinking results when a large value of d ,

relative to the object size, is used.

As seen in this example, choosing a large value of d may lead to the generation of conflicting

requirements if the involved sets (original, internal and external) overlap, thus leading to poor

fitting results.

We describe here a method for replacing the added sets by explicit differentiation of the

polynomial. The motivation for this replacement is as follows.

The basic solution, including the expanding and shrinking of the original data points and the

solution of (9), is actually an implementation of an approximated differentiation. Fig. 4

demonstrates the location of the added internal and external sets and the values of the

polynomial at these sets. This figure also shows how the required values generate an implicit

requirement for the value of the derivative of the polynomial in the direction perpendicular to the

original data set.

14/32

Perpendicular
Direction

Polynomial
Value

Tangent Direction
(entering page)

d

d

Pa(x2N+n,y2N+n) =

Approximate Implicit
Derivative

Pa(xn,yn) =0
Pa(xN+n,yN+n) = -

Fig. 4: View of added internal and external points from the tangent direction at ()nn yx ,

By replacing the numerical approximation of the differentiation operation (implemented via

the expansion and shrinking of the data) with an explicit analytical differentiation of the

polynomial, we avoid the numerical difficulties in the original 3L algorithm.

 We begin by calculating the differentials of the monomial in both axes. The vectors

() ()nnYnnX yxpyxp ,,, denote the derivatives with respect to x and y , respectively, of the

monomial vector at point ()nn yx , :

() () ()

() () ()

,

,

, ,

, ,

X n n

Y n n

n n

n n

x x y y

x x y y

d
p x y p x y

dx
d

p x y p x y
dy

= =

= =

=

=
 (22)

Multiplying the derivatives of the monomials by the coefficient vector yields the respective

derivatives of the polynomial according to:

() () ()

() () ()

,

,

, ,

, ,

T
X n n

T
Y n n

n n

n n

a

a

x x y y

x x y y

d
P x y a p x y

dx
d

P x y a p x y
dy

= =

= =

=

=
 (23)

We attempt to bring the polynomial differential at the location of the original data set points to

the direction of the line locally perpendicular to the data set near each data set point (see Fig .5).

15/32

The angle relative to the X axis of the perpendicular vector is denoted by nα , as shown in Fig.

5, which also shows that in order to calculate nα , we fit a straight line (1st order polynomial) to

the points about the data point ()nn yx , under consideration.

Perpendicular
angle

- Neighboring Data points
- Data point n

wn

vn

n

Fig .5: Fitting a 1st order polynomial to 7 points about the point ()nn yx ,

The vectors [] []NN wwwvvv ,...,,,..., 11 == (where N is the number of points in the data set)

contain the elements of the perpendicular vectors for each of the data set points. Each pair of

elements ()nn wv , in , ,v w is a unit vector pointing in the direction that is locally perpendicular

to the data set at each point n (i.e., to the straight line approximation).

Having estimated nα at each point n , from the data set, we can calculate the components of the

vectors , ,v w at each data point from the relations:

()

()
()

()nn

nn

nn

n
n

n

d
w

d
v

d
wv

tg
w
v

αε

αε

ε

α

cos

sin

22 =

=
⇒

=+

=
 (24)

The values of b and M in (9) determine the value of the polynomial and its gradient. In

order for the gradient of the polynomial to be perpendicular to the data set, and have an absolute

value of
d
ε (as seen in Fig. 4), and to keep the value of the polynomial at the location of the data

points equal to zero, b and M become:

16/32

[]
[]YX MMMM

wvb

0

0
=

=
 (25)

where,

() ()[]
() ()[]

() ()[]NN
T

Y
T

YY

NN
T

X
T

XX

NN
TT

yxpyxpM

yxpyxpM

yxpyxpM

,...,

,...,

,...,

11

11

110

=

=

=

 (26)

The LS solution in (9) can now be used with the above expressions for b and M .

 In the 3L algorithm, the required value of the gradient at each data point is set to a constant

value of 3 / dε . Equation (9) can, therefore, be written as:

 () 1−
= TT

normLS MMMb
d

a ε
 (27)

where, in the vector normb the elements of vectors , ,v w in b are replaced by the normalized

elements , , , norm n norm nv w , satisfying

()

()

()
()

,

,,

,2 2
, ,

sin
cos

1

norm n
n

norm n nnorm n

norm n n
norm n norm n

v
tg vw

w
v w

α α
α

= = ⇒ =+ =

 (28)

Changing the scale value / dε in (27) does not affect the location of the zero-set of the

polynomial and is therefore permissible. When allocating bits for each coefficient, we scale the

coefficients anyway, so that the largest coefficient equals 1. Since most often scaling is involved,

we simplify notation by ignoring the constant - / dε in (27).

3 This needs to be the absolute value of the gradient. However, the sign of the gradient should

remain constant at all the data points.

17/32

4.2 Improved fitting algorithms

 In order to obtain an optimal solution to the fitting problem one needs first to define the

criterion according to which the optimization process would be carried out.

We are interested in obtaining a coefficient vector a that produces a polynomial with two

properties: a) best fit to the data (() 0, =nna yxP), b) minimal deviation due to changes in the

coefficients.

Using the error bound in (18) with a maximum coefficients error of maxδ we look for a

polynomial which minimizes
()

()
max

1

,

,

r

k n n
k

a n n

p x y

P x y

δ
=

∇

∑
 for each of the data set points.

The first requirement also implies that the tangent direction of the polynomial equals the tangent

direction of the data for each of the data set points. This is due to the fact that the gradient of the

polynomial is perpendicular to the zero-set. This leads to the requirement:

() () ()n

nnanna tg
x

yxP
y

yxP
α=

∂
∂

∂
∂ ,,

 (29)

where nα is the angle of the local perpendicular to the data set about point n located at ()nn yx ,

- see Fig .5.

We denote the coefficient vector that best achieves these requirements as OPTa .

Since no data point has priority over any other point (if no error weighting is used), we can

limit the maximal fitting error, due to changes in the coefficients, to a constant value by

requiring that the value of
()

()
max

1

,

,

r

k n n
k

a

p x y

P x y

δ
=

∇

∑
 would be the same for all the given data points,

i.e., for Nn ,...,1= . Since the value of this constant does not affect the optimization, we require

the following:

18/32

 () () NnforyxpyxP
r

k
nnka ...,,1,,

1
==∇ ∑

=

 (30)

The LS solution for the requirements presented above can be calculated within the framework

of the solution described in section 3.1. Modifying (24) according to the requirement in (30)

yields:

()

() ()

() ()

() ()n

r

k
nnkn

n

r

k
nnkn

r

k
nnknn

n
n

n

yxpw

yxpv

yxpwv

tg
w
v

α

αα

cos,

sin,

,
1

1

1

22

=

=

⇒

=+

=

∑

∑

∑
=

=

=

 (31)

which upon substitution into (25) yields a solution that we denote as the Min-Max solution.

Using the same formulation, we can consider a minimum variance criterion that would minimize

the variance of the error. Modifying (24) as shown in (32) and substituting in (25) yields a

solution that we denote as the Min-Var solution.

()

() ()

() ()

() ()n

r

k
nnkn

n

r

k
nnkn

r

k
nnknn

n
n

n

yxpw

yxpv

yxpwv

tg
w
v

α

αα

cos,

sin,

,
1

2

1

2

1

222 ∑

∑

∑
=

=

=

=

=
⇒

=+

=

 (32)

4.2.1 Adding weights to data points

The above formulation was done with the assumption that all the data points have the same

priority - in terms of goodness of fit. Prioritizing the data points (i.e., giving different weights to

the errors at different points) yields the following cost function:

 T
WWW eeE = (33)

where, generalizing (6),

 () WbMWaWbMaeW −=−= (34)

Here W is a 3 3N N× diagonal weighting matrix whose diagonal elements are the relative

weights. I.e., the diagonal elements 1,..., N are the weights for the zero fitting errors, and

elements 1,..., 2N N+ and 2 1,...,3N N+ are the weights for the sensitivity

19/32

Replacing by aM aMW and by b bW , the LS solution in (9) becomes:

 () () 1221 −−
== TTTTTT

WLS MMWMWbMMWWMWWba (35)

The selection of the weights depends on the application and fitting goal. If some points have

priority over others, than both the zero values and gradients of these points should receive

greater weight values than those of other points. E.g., if point m has priority over point l than

() ()
() ()
() ()

, ,

, ,

2 , 2 2 , 2

W m m W l l

W m N m N W l N l N

W m N m N W l N l N

>

+ + > + +

+ + > + +

 (36)

However, the fitting can also be optimized to produce global characteristics. Choosing large

values for the first N elements, gives preference to a good fit with less regard to the sensitivity,

while choosing large values for the second and third N elements gives preference to a stable fit

on the expense of its tightness.

4.3 Extension to 3D fitting

The algorithms presented above for 2D curves can be extended to 3D space for fitting

surfaces of 3D bodies.

The development of the fitting algorithms for 3D bodies follows the procedure presented above,

with the following modifications:

• All coordinates are given in 3D.

• Perpendicular vectors are now calculated as normals to tangent surfaces (instead

of normals to lines).

The LS solution for the 3D fitting problem has still the form in (9), i.e.,

 () 1−
= TT

LS MMMba (37)

but here,

20/32

[]
[]ZYX MMMMM

qwvb

0

0
=

=
 (38)

where,

() ()[]
() ()[]

() ()[]
() ()[]NNN

T
Z

T
ZZ

NNN
T

Y
T

YY

NNN
T

X
T

XX

NNN
TT

zyxpzyxpM

zyxpzyxpM

zyxpzyxpM

zyxpzyxpM

,,...,,

,,...,,

,,...,,

,,...,,

111

111

111

1110

=

=

=

=

 (39)

 [] nn
T

nnn ugqwv ⋅= (40)

where nu is a unit vector locally perpendicular4 to the surface near data point n . This vector can

be computed by fitting a 1st order 3D polynomial (a plane) to the points about point n . The

coefficient vector of this 1st order polynomial is in fact the desired vector nu .

ng is calculated according to the selected fitting algorithm:

 ()

()

1

2

1

For 3 : 1

For - : , ,

For : , ,

n
r

n k n n n
k

r

n k n n n
k

L g

Min Max g p x y z

Min Var g p x y z

=

=

=

=

− =

∑

∑

 (41)

 The monomial differentials () (), , , , ,X n n n Y n n np x y z p x y z are as defined for the 2D case and

()nnnZ zyxp ,, is the differential of the monomial vector in the Z direction for data point n .

4.4 Summary of fitting algorithms

The following tables summarize the different fitting algorithms presented in this section, for

fitting both 2D curves and and 3D surfaces.

4 According to (2), the monomial vector is perpendicular to the zero set of the polynomial.

21/32

Table I: Summary of 2D Min-Max and Min-Var fitting algorithms

Data points (input) () ()NN yxyx ,,...,, 11

Monomial vector () () ()[]
[]dddd

r

yxyxyxyxyxyxyx
yxpyxpyxp

011110100100
1

,,...,,,...,,,
,,...,,,

−−

==

Parameter vector (output)],...,,[21 raaaa =

Size of output ()() 2/21 ++= ddr

Non-weighted solution Weighted solution Least squares solution

() 1−
= TT

LS MMMba () 122 −
= TT

WLS MMWMWba

Structure of M and b []
[]YX MMMM

wvb

0

0
=

=

Contents of M () ()[]
() ()[]

() ()[]NN
T

Y
T

YY

NN
T

X
T

XX

NN
TT

yxpyxpM

yxpyxpM

yxpyxpM

,...,

,...,

,...,

11

11

110

=

=

=

Min-Max algorithm Min-Var algorithm Contents of b

() ()

() ()n

r

k
nnkn

n

r

k
nnkn

yxpw

yxpv

α

α

cos,

sin,

1

1

=

=

∑

∑

=

=
() ()

() ()n

r

k
nnkn

n

r

k
nnkn

yxpw

yxpv

α

α

cos,

sin,

1

2

1

2

∑

∑

=

=

=

=

22/32

 Table II: Summary of 3D Min-Max and Min-Var fitting algorithms

Data points (input) () ()NNN zyxzyx ,,,...,,, 111

Monomial vector () () ()[]
[]dnmlzyxzyx

zyxpzyxpzyxp

iii
nmlnml

r

rrr ≤++

==

:,...,

,,,...,,,,,
111

1

Parameter vector (output)],...,,[21 raaaa =

Size of output 3 22 12 22 12r d d d= + + +

Non-weighted solution Weighted solution Least squares solution

() 1−
= TT

LS MMMba () 122 −
= TT

WLS MMWMWba

Structure of M and b []
[]ZYX MMMMM

qwvb

0

0
=

=

Contents of M () ()[]
() ()[]

() ()[]
() ()[]NNN

T
Z

T
ZZ

NNN
T

Y
T

YY

NNN
T

X
T

XX

NNN
TT

zyxpzyxpM

zyxpzyxpM

zyxpzyxpM

zyxpzyxpM

,,...,,

,,...,,

,,...,,

,,...,,

111

111

111

1110

=

=

=

=

Min-Max algorithm Min-Var algorithm Contents of b

[]

() n

r

k
nnnk

T
nnn

uzyxp

qwv

⋅

=

∑
=1

,,

[]

() n

r

k
nnnk

T
nnn

uzyxp

qwv

⋅

=

∑
=1

2 ,,

Normal vector to data

surface at point n

nu

23/32

5 Simulation Results

In this section we present simulation results of the 3L fitting-algorithm and of the proposed

Min-Max and Min-Var algorithms, derived in section 4. Further detail can be found in [19].

5.1 Sensitivity to coefficient quantization

In this subsection we examine by simulations the sensitivity of the algorithms presented here

to coefficient changes. Quantization of the coefficients to the closest integer gives only a single

instance of the coefficient error vector and does not allow a statistical analysis of the error

properties due to quantization errors. We use, therefore, uniformly distributed random noise to

simulate the effects of quantization. The results of this test would indicate which algorithm

yields more robust fitting results under coefficient quantization.

An object whose boundary is shown in Fig. 6, comprising of 204 data points, was used to test

the 3L, Min-Var, and Min-Max algorithms.

 -1.5 -1 -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

 0

 0.5

 1

 1.5
2D object boundary

Fig. 6: Object boundary used in simulations

24/32

Tables III(a) and III(b) compare the errors obtained using the examined fitting algorithms for the

boundaries of the tested object, quantized with several different number of bits per coefficient.

The same random noise, having a uniform distribution in the range corresponding to the least

significant bit (LSB) in the binary representation of the coefficients, was added to the coefficient

vectors obtained via each fitting algorithm. 500 independent error vectors were examined in this

test. For each algorithm two error measures were considered:

 2

1

N

RMS n
n

E e
=

∑ ; { }1max ,...,MAX NE e e (42)

where the error ne for each data point is the distance between the nearest point on the polynomial

zero-set and the data point ()nn yx , .

The mean value and variance (over the different noise vectors) of these error measures are

shown in Table III(a) and Table III(b).

Table III: Comparison of error statistics for the 3L, Min-Var, and Min-Max fitting algorithms

(a) 12th order polynomial and 16bits coefficients

Algorithm → 3L Min-Var Min-Max

Error Measrure ↓ Mean Variance Mean Variance Mean Variance

RMSE 0.04 0.034 0.02 0.003 0.019 0.0033

MAXE 0.15 0.22 0.046 0.007 0.044 0.015

(b) 4th order polynomial and 8bits coefficients

Algorithm → 3L Min-Var Min-Max

Error Measure ↓ Mean Variance Mean Variance Mean Variance

RMSE 0.0415 0.0021 0.0352 0.0017 0.0317 0.0017

MAXE 0.1132 0.0258 0.0979 0.0232 0.0795 0.0348

25/32

 (c) 4th order polynomial and 6bits coefficients

Algorithm → 3L Min-Var Min-Max

Error Measure ↓ Mean Variance Mean Variance Mean Variance

RMSE 0.042 0.001 0.035 0.0007 0.032 0.0008

MAXE 0.11 0.007 0.097 0.0063 0.079 0.0088

By examining the above three tables, it is evident that using different fitting criteria results in

different performance. The original 3L algorithm does not define any stability goal and therefore

achieves no best score in any of the tests. The mean error is minimal when the Min-Max

algorithm is used. This result is expected because the fitting criterion demands the lowest

maximal error and therefore also leads to a minimal mean error. Accordingly, the error variance

for both objects is lowest for the Min-Var algorithm. This result is expected because the criterion

minimizes this quantity.

5.2 Plots of sensitivity function

In this subsection the behavior of the sensitivity function obtained by the different algorithms

examined above is graphically demonstrated. The boundary shown in Fig. 6 was used in the

simulations of this section. We use a relatively simple shape as it allows a clear illustration of the

fitting errors characteristics due to coefficient quantization.

The values of the sensitivity function for each point of the data set was calculated, using the

polynomials obtained by the different fitting algorithms examined. The fitting results by 8th order

polynomials and the values of the sensitivity function are plotted in Fig. 7(a1, b1, c1). The

sensitivity function determines the change in the location of the zero-set, in the direction

perpendicular to the desired zero-set, due to changes in the coefficients. Therefore, the values of

the sensitivity function are plotted in Fig. 7 as vectors that are perpendicular to the zero-set, with

26/32

a length proportional to the value of the function. For plotting purposes the values of the

sensitivity function were normalized (divided by an appropriate fixed number). As seen in Fig. 7,

all three algorithms produced good fitting results when the coefficients are not quantized. This is

because the specific object boundary is relatively simple for an 8th order polynomial. Yet, it is

clear from the results demonstrated in Fig. 7 that the 3L algorithm is the most sensitive of the 3

examined algorithms and that the Min-Max algorithm obtains the best results.

5.3 Fitting a 3D surface

Fig. 8 shows two faces of a 3D object (left column – front view; right column – back view),

with the top row displaying the original object, and the next rows - the fitting results with the 3L,

Min-Var and Min-Max, algorithms, respectively. The improvement in fitting over the 3L

algorithm, especially by the Min-Max algorithm is clearly seen. This is also manifested by the

root-mean-squared (RMS) values of the distances between the input data points and the zero set.

The values obtained are: 3.67, 3.5, and 1.91, for the above examined three algorithms,

respectively.

27/32

Fig. 7: Sensitivity and fitting errors of polynomial zero-sets for the 3L, Min-Var, and Min-

Max algorithms: (a) Upper row – 3L algorithm, (b) Middle row – Min-Var algorithm,

(c) Lower row – Min-Max algorithm.

Left column (1) – Coefficients are not quantized.

Center column (2) –18 bits coefficient quantization.

Right column (3) – 20 accumulated zero-sets with noise added to coefficients.

Noise has independent samples from a uniform distribution with a variance of 1.1e-6 (LSB in 18 bits).

 -1.5 -1 -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

 0

 0.5

 1

 1.5
Zero-set with 18 bits quantized coefficients - 3L

 -1.5 -1 -0.5 0 0.5 1 1.5
-1.5

 -1

-0.5

 0

 0.5

 1

 1.5
Sensitivity function plot - 3L

 -1.5 -1 -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

 0

 0.5

 1

 1.5
Sensitivity function plot - Min-Max

 -1.5 -1 -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

 0

 0.5

 1

 1.5
Zero-set with 18 bits quantized coefficients - Min-Max

 -1.5 -1 -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

 0

 0.5

 1

 1.5
Sensitivity function plot - Min-Var

(a1) (a2) (a3)

(b1) (b3)

(c1) (c2) (c3)

 -1.5 -1 -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

 0

 0.5

 1

 1.5
Zero-set with 18 bits quantized coefficients - Min-Var

(b2)

28/32

Fig. 8: 3D Fitting results: Left – Shape from front, Right – Shape from back.
Top row – Original data; Second row – fitting results with 3L algorithm; Third row – fitting results

with Min-Var algorithm; Bottom row – fitting results with Min-Max algorithm

29/32

6 Summary and conclusions

In this paper we introduced an approach for robust fitting by implicit polynomial of 2D curves

and 3D surfaces that is based on reducing the sensitivity of the fitting polynomial zero-set to

coefficient changes.

An application of implicit polynomials to contour coding had brought the subject of

sensitivity to coefficient quantization to our attention. We began our development with a study

of the sensitivity of the zero-set of implicit polynomials to coefficient quantization obtained by

existing fitting algorithms. The analysis that we provide explains the differences in stability

between the examined fitting algorithms and shows why the 3L algorithm out-performs earlier

algorithms. We provide a numerical tool, rather than just an intuitive explanation.

A conclusion from the sensitivity analysis is that the 3L fitting algorithm could be still greatly

improved, in terms of fitting tightness and stability, by adding stability considerations to the

fitting process. In this paper we show the steps in the development of the proposed fitting

algorithms, aimed at producing implicit polynomials that are tight about the data set and robust

to coefficient quantization.

We present two algorithms, denoted Min-Max and Min-Var fitting algorithms. The two

algorithms exhibit similar performance. The first, the Min-Max algorithm, minimizes the

maximal error due to coefficient quantization. The second algorithm, Min-Var, minimizes the

error variance due to coefficient errors. Which algorithm should be used depends on the

application. For example, in contour coding applications, where the coefficients are quantized

and the maximal displacement of the zero-set should be minimized, the Min-Max algorithm is

more effective. We also show how the proposed algorithms can be modified to support fitting of

3D data.

Although the development of the proposed fitting algorithm was motivated by an image

coding application, it was found to achieve better fitting than the 3L algorithm, even when the

30/32

coefficients are not quantized. We have demonstrated that uniform sensitivity to coefficient

errors for all the data points, leads to improved fitting. The proposed fitting algorithms could

therefore have an advantage in all the applications that use implicit polynomial fitting, such as

object recognition, contour coding, computer graphics, CAD and others.

31/32

References

[1] T.W. Sederberg and D.C. Anderson, “Implicit Representation of Parametric Curves and

Surfaces”, Computer Vision, Graphics, and Image Processing, Vol.28, No.1, pp. 72-84,

1984.

[2] G. Taubin, “Estimation of Planar Curves, Surfaces and Nonplanar Space Curves Defined

by Implicit Equations, with Applications to Edge and Range Image Segmentation”, IEEE

Trans. Pattern Analysis and Machine Intelligence, Vol. 13, No. 11, pp. 1115-1138, Nov.

1991.

[3] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D. J. Kriegman, “Parameterized

Families of Polynomials for Bounded Algebraic Curve and Surface Fitting”, IEEE Trans.

Pattern Analysis and Machine Intelligence, Vol. 16, pp. 287-303, 1995.

[4] D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell, “Invariant

Descriptors for 3D Object Recognition and Pose”, IEEE Trans. Pattern Analysis and

Machine Intelligence, Vol. 13, No. 10, pp. 971-992, Oct. 1991.

[5] D.A. Forsyth, “Recognizing Algebraic Surfaces from Their Outlines”, Proc. Int'l. Conf.

Computer Vision, pp. 476, 480, Berlin, May 1993.

[6] M. Barzohar, D. Keren, and D. Cooper “Recognizing Groups of Curves Based on New

Affine Mutual Geometric Invariants, with Applications to Recognizing Intersecting Roads

in Aerial Images” IAPR International Conference on Pattern Recognition, Jerusalem, pp.

Vol. 1, pp. 205-209,October 1994.

[7] Jean-Philippe Trael, David B. Cooper: The Complex Representation of Algebraic Curves

and Its Simple Exploitation for Pose Estimation and Invariant Recognition. IEEE Trans.

Pattern Analysis and Machine Intelligence, Vol. 22, No. 7, pp. 663-674, July 2000.

[8] A. Helzer, M. Bar-Zohar and D. Malah, "Using Implicit Polynomials for Image

Compression", Proc. 21st IEEE Convention of the Electrical and Electronic Engineers in

Israel, Tel-Aviv, Israel, pp. 384-388, April 2000.

[9] Tolga Tasdizen, David B. Cooper: Boundary Estimation from Intensity/Color Images with

Algebraic Curve Models. Int’l Confernce Pattern Recognition (ICPR), pp.1225-1228,

2000.

32/32

[10] C. Bajaj, I. Ihm, and J. Warren, “Higher-Order Interpolation and Least-Squares

Approximation using Implicit Algebraic Surfaces”, ACM Trans. Graphics, Vol. 12, No. 4,

pp. 327-347, 1993.

[11] J. Subrahmonia, D. Cooper, and D. Keren, "Practical Reliable Bayesian Recognition of 2D

and 3D Objects Using Implicit Polynomials and Algebraic Invariants," IEEE Trans.

Pattern Analysis and Machine Intelligence, Vol. 18, pp. 505-519, 1996.

[12] Z. Lei, M.M. Blane, and D.B. Cooper, “3L Fitting of Higher Degree Implicit

Polynomials”, Technical Report LEMS TR-160, Brown University LEMS Lab., 1997.

[13] M.M. Blane, Z. Lei, H. Civil and D.B. Cooper “The 3L Algorithm for Fitting Implicit

Polynomials Curves and Surface to Data”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 22, No. 3, March 2000.

[14] Z. Lei and D.B. Cooper, “New, Faster, More Controlled Fitting of Implicit Polynomial 2D

Curves and 3D Surfaces to Data”, IEEE Conference on Computer vision and Pattern

Recognition, (San Francisco), June 1996.

[15] Z. Lei and D.B. Cooper, “Linear Programming Fitting of Implicit Polynomials”, IEEE

Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 2, pp. 212-217, Feb. 1998.

[16] Daniel Keren, Craig Gotsman, “Fitting Curves and Surfaces with Constrained Implicit

Polynomials”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 21, No. 1, pp.

31-41, Jan. 1999.

[17] T. Tasdizen, J.-P. Tarel, and D.B.Cooper. “Improving the stability of algebraic curves for

applications “. IEEE Trans. On Image Processing, Vol. 9, No. 3, pp. 405-416, March

2000.

[18] A. Helzer, M. Bar-Zohar and D. Malah, "Robust Fitting of Implicit Polynomials with

Quantized Coefficients to 2D Data", Proc.15th Int'l Conf. on Pattern Recognition,

Barcelona, pp. 290-293, Sept. 2000.

[19] A. Helzer “Using Implicit Polynomials for contour coding”, M.Sc Thesis, Technion –

Israel Institute of Technology, Haifa, Israel, Dec. 2000.

 Available at: http://www-sipl.technion.ac.il/publications/thesis/helzer/helzer-thesis.pdf.

