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Abstract 

This work deals with fitting 2D and 3D implicit polynomials (IPs) to 2D curves and 3D surfaces, 

respectively. The zero-set of the polynomial is determined by the IP coefficients and describes 

the data. The polynomial fitting algorithms presented in this paper aim at producing polynomials 

that are robust to coefficient errors. Special emphasis is given here to errors due to coefficient 

quantization. The development of the algorithms begins with an analysis of zero-set errors 

caused by coefficient errors. The result of this analysis provides means for evaluating the 

performance of existing fitting algorithms and for the development of new algorithms that yield 

more stable polynomials. We also show that although the proposed algorithms are designed to be 

robust to coefficient errors, they also produce tighter fits than the other algorithms examined, 

even when the coefficients are practically unquantized. 
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1 Introduction 

Implicit polynomials (IP) have long been introduced for fitting 2D curves and 3D surfaces 

[1,2,3]. The ability to efficiently describe complicated boundaries using the coefficients of 

implicit polynomials is attractive for applications in the fields of object recognition and pose 

estimation [4,5,6,7], coding [8], boundary estimation from intensity/color images [9], and 

computer graphics [10]. The existence of geometric invariants [6,7,11] has made implicit 

polynomials especially appealing for the first application. 

In all the applications involving implicit polynomials, the basic and most desired properties 

are tight fitting and stability. Besides a tight fit, the curve described by an IP must be stable and 

not change much when the polynomial coefficients change only slightly, like when the 

coefficients are represented by a limited number of bits. These requirements are the basis for the 

polynomial-fitting algorithms described in this paper. 

In recent years, the subject of implicit polynomial fitting has seen much progress - beginning 

with the classical least-squares (LS) fitting algorithm [1] and followed by the 3L fitting 

algorithm [12,13] and others [14-18]. The classical least-squares fitting algorithm suffers from a 

very high sensitivity to coefficient errors. This high sensitivity is attributed to insufficient 

constraining that results in too many degrees of freedom. To alleviate the sensitivity problem, 

the 3L fitting-algorithm introduces additional constraints, which are generated from the original 

data via expansion and shrinking. This solution provides much improved performance, in terms 

of stability and tightness, as compared to the earlier LS algorithm. However, it still suffers from 

numerical problems as a result of expanding and shrinking discrete data. This algorithm was 

further improved in [17] by basing the fitting on ridge regression. 

In our study, we achieve improved fitting stability by considering the sensitivity of the 

polynomial coefficients to quantization. Our work actually originated from a coding application 

[8], where our concern was that high sensitivity of the coefficients results in a higher bit rate. 
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Therefore, reducing the sensitivity as much as possible was crucial. To accomplish this goal, we 

investigated the sensitivity of zero-set points to coefficient quantization. We developed a 

sensitivity function, which evaluates the zero-set errors due to small changes in coefficient 

values. Having developed this sensitivity function, it became possible to analyze the error 

properties of existing algorithms (classical least-squares and 3L) and to develop our own fitting 

algorithms, which minimize the sensitivity to coefficient quantization. The sensitivity analysis 

indicates that the sensitivity is controlled by two attributes: The gradient of the polynomial at the 

zero-set point, and the value of its monomial1. We noticed that earlier work dealt only with the 

gradient, without relating to the value of the monomial. We show that the minimization of the 

value of the sensitivity function at the data points improves the fitting stability to coefficient 

quantization. The proposed algorithms are denoted here as Min-Max and Min-Var algorithms. 

Furthermore, we conclude (and demonstrate by simulations) that these algorithms yield tighter 

and more robust fitting, even when the coefficients are practically not quantized. Improved 

fitting results are especially noticeable when high-order polynomials are used (6th and above). 

Thus, the algorithms developed to optimize polynomial fitting for coding turn out to be very 

useful for other applications as well. 

The layout of this paper is as follows: 

Section  2 provides background material on polynomial fitting and outlines the 3L fitting-

algorithm, from which our algorithms evolved. Section  3 provides an analytical tool for 

calculating bounds on the variation of zero-sets of implicit polynomials due to small errors in the 

polynomial’s coefficients values. Section  4 describes the development of the proposed fitting 

algorithms. Section 5 presents simulation results in comparing the proposed algorithms with the 

3L algorithm. Section 6 summarizes and concludes the paper. 

 

                                                 
1 See (1) in section  2.1. 
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2 Background 

In this section we provide a brief overview of implicit polynomials fitting. 

2.1 Fitting 2D implicit polynomials to curves 

The objective of polynomial fitting is to describe data points (object boundary for 2D objects 

or surfaces for 3D objects) by the zero-set of a polynomial. That is, the value of the polynomial 

should be zero at the location of the data points. 

The value of the polynomial at a point (x,y) can be described as the product of two vectors – a 

parameter vector (containing the polynomial’s coefficients),  and a vector of monomials. 

For a dth order polynomial, the monomial vector is defined as: 

 
( ) ( ) ( )[ ]

[ ]dddd
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,,...,,,
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==
  (1) 

where ( )( ) 2/21 ++= ddr  and the parameter vector is ],...,,[ 21 raaaa = . 

The value of the polynomial  described by a  at location ( )yx,  is: 

 ( ) ( )yxpayxP T
a ,, =   (2) 

The fitting problem is therefore to find a parameter vector a  that leads to a polynomial that best 

fits the data under a criterion to be specified. The data set is assumed to contain N  points with 

coordinates ( ) Nnyx nn ,...,1,, = . 

We denote the zero-set of the polynomial defined by the coefficient vector a  as: 

 ( ) ( ){ }0,:, == yxPyxZ aa   (3) 

 

2.1.1  Overview of the 3L algorithm 

The 3L algorithm developed in [12,13] is presented as a linear algorithm for fitting an 

implicit polynomial to a data set. The term linear is used by the authors to describe a problem of 

the form b aM= , where b  is a known vector, M  is a known matrix and the vector a  needs to 
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be calculated. This algorithm produces a result within one pass and no iterative computations are 

required. This stands in contrast to previous fitting algorithms [1,2], which require an iterative 

solution, with unproven convergence properties. 

The 3L algorithm is based on the construction of two additional data sets that are determined 

from the original data set. The two additional data sets are constructed so that one set is internal 

and the other is external, relative to the original data set, with a distance d  from it (see Fig. 1). 

The goal of this algorithm is to find a polynomial that has a value of zero at points belonging to 

the original data set, and values of ε  and ε−  at the internal and external points, respectively. To 

achieve this goal, the 3L algorithm uses a least squares solution that minimizes the sum of 

squared errors between the required and actual polynomial values at those three data sets. 

 

 Original data set

Distance 'd'

New internal
data set

New external data set

 

Fig. 1: Original data set  (center line) and new internal and external data sets. 

 

Considering the original data set points and the two added sets (internal and external) as a 

single set of 3 N  points. The first N  points are the original data points (points 1,..., N ), the 

second group of N  points ( N +1,...,2 N ) are the external points, and the third group of N  

points (2 N +1,...,3 N ) are the internal points. 
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Thus, for N  original data set points and r  polynomial coefficients we obtain N3 equations 

with r  variables. For the fitting problem to be over-determined, the relation r < 3 N  should be 

satisfied. 

The goal is to minimize the total squared-error E : 

( )( ) ( )( ) ( )( )
2 32 2 2

1 1 2 1

Error w.r.t original points Error w.r.t external points Error w.r.t internal points

, , ,
N N N

T T T
n n n n n n

n n N n N

E a p x y a p x y a p x yε ε
= = + = +

= + + + −∑ ∑ ∑  (4) 

The constant ε  is  some small positive constant. The error E  may be written as: 

 TeeE =  (5) 

where the row vector e  is given by, 

 )( bMae −=  (6) 

The 3N -dimensional vector b and the 3r N×  matrix M are defined by: 
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The vectors ε  and 0 , making up the vector b , are constant row vectors of length N  with 

elements ε  and 0 , respectively. 

The least squares (LS) solution for the problem of obtaining a  that minimizes E  in (5) is: 

 ( ) 1−
= TT

LS MMMba  (9) 

This solution is feasible when the minimization problem is over-determined. 

The parameter vector LSa  is the best parameter-vector (in the LS-error sense) of a polynomial 

whose zero-set approximates the location of the original data set, and whose values on both sides 
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of the original data set (at distance ‘d’) are approximately ε± (positive on the outside and 

negative on the inside - in the above construction). 

3 Sensitivity to coefficient errors 

In this section we consider the effect of coefficient quantization on the location of the zero-set 

points via a sensitivity function. We begin with a formulation of bounds on the error at the 

location of the zero-set points due to coefficients quantization. We than compute these error 

bounds for the 3L fitting algorithm presented in section  2.1.1. As a result, we find that the 3L 

algorithm can be improved by minimizing not only the distance between the zero-set and the 

data points but also the sensitivity of the zero-set to small changes (or errors) in the coefficients. 

We denote the improved algorithms as – Min-Max and Min-Var, according to the optimized 

property. 

3.1 Zero-set sensitivity to parameter changes 

When the values of the coefficients in the parameter vector change, the entire zero-set 

changes. In this subsection we examine how changes in the parameter values affect the location 

of a point on the zero-set. Since the zero-set is continuous, we cannot measure the distance 

between two points on it before and after a parameter change. We define therefore the change in 

a zero-set point ( zd ) as the distance between an original zero-set point, ( )yx zzz ,= , and the 

closest point on the new zero-set, obtained after the change in the parameters. 

Let’s define a sensitivity function at a zero-set point ( )yx zzz ,=  by the following 2 r× matrix: 

 ( ) ( )
ad

yxzdyxS z
a

,, =   (10) 

This function expresses the relation between small changes (errors) in the coefficients and small 

changes in the location of zero-set points. 
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The change in the location of a zero-set point ( ) [ ]YXZ yx εεε =, , resulting from a small change 

in the parameters 
1

[ ... ]a a ar=δ δ δ , is the product of the error components with the above 

sensitivity function2: 

 ( ) ( ), ,z T
Z a ax y S x yε δ≅   (11) 

3.1.1 Zero-set sensitivity function in the normal direction 

Small changes in the position of zero-set points along a tangent direction move zero-set points 

back into the zero-set. Therefore, for the purpose of evaluating zero-set changes, it is sufficient 

to examine changes in the direction that is perpendicular (normal) to the zero-set. We denote by 

( )yxu ,  the component of ( )yxzd ,  that is locally perpendicular to the zero-set (see Fig. 2): 

 ( ) ( ) ( )yxPyxzyxu a ,,, ∇⋅=  (12) 

where ba ⋅  denotes the inner-product between a  and b , and ( )yxf ,∇  denotes the gradient of 

f  at ( )yx, , and ( )yxPa ,  is the value of the polynomial determined by a  at location ( )yx, . 

Therefore, the sensitivity function of interest here is given by the vector ( ) ( )
ad

yxduyxS u
a

,, = , and 

denotes the relation between changes in the zero-set in a locally perpendicular direction to the 

zero-set, and changes in the coefficient vector. 

This function can be written as a product of two independent parts: 

 ( ) ( )
( )
ad

yxdP
yxdP

duyxS a

a

u
a

,
,

, =   (13) 

 

The right-hand part of the product in (13) quantifies the change in the value of the polynomial at 

( )yx,  due to a small change in the parameter vector. This part is a vector (has an element for 

                                                 
2 This is a 1st order Taylor expansion approximation. The accuracy of the approximation 

depends on the magnitude of the error components. 
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each of the elements in a ). The left-hand part quantifies the deviation of the zero-set point, in 

the direction perpendicular to the zero-set, due to a small change in the value of the polynomial 

at ( )yx, . This part is a scalar. 

We next evaluate each part of the sensitivity function in (13) separately, beginning with the 

left-hand part. 

The deviation in the location of a zero point in a direction locally perpendicular to the zero-set, 

due to a change in the parameter vector, is described in Fig. 2. 

Original Position
of zero set point

Shifted Position of
zero-set point

Direction of
the tangent

du

 

Fig. 2: Location of a zero-set point before and after a small change in the coefficients 

 

For small changes in the parameter vector, the ratio between the position error in the 

perpendicular direction, du , and the change in the value of the function at point ( )yx,  is the 

inverse of the gradient magnitude of ( )yxPa , : 

 ( ) ( ) ( ) ( ) 22 ,,

1
,

1,
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∂
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∂
∂
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  (14) 

The right-hand part of the sensitivity function in (13),  ( )
ad

yxdPa , , can be directly calculated from 

(2) (i.e., using ( ) ),(, yxpayxP T
a = , where ( )yxp ,  is the monomial vector).  The result is: 

 ( ) ),(, yxp
ad

yxdPa = .  (15) 

Using (14) and (15), the sensitivity function in (13) can now be written as: 



10/32 

 ( ) ( )
( )yxP

yxpyxS
a

u
a ,

,,
∇

=   (16) 

3.1.2  Zero-set fitting error bounds and variance 

Having obtained (16), we use it to obtain bounds on the fitting errors due to small changes in 

the coefficients. The error in the direction perpendicular to the zero-set, ( )yxu ,ε , is: 

 ( ) ( ) ( )
( )

( )

( )
1

,,
, ,

, ,

r

k a
u T T k

u a a a
a a

k
p x yp x y

x y S x y
P x y P x y

== ⋅ = =
∇ ∇

∑ δ
ε δ δ   (17) 

For a given point ( )yx,  on the zero set, the maximal error is bounded by: 

 ( )
( )

( )

( )

( )

( )

( )
1 1 1

max

, , ,
,

, , ,

k k

r r r

k k k
k k k

u
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x y
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= = == ≤ ≤
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∑ ∑ ∑δ δ
ε δ   (18) 

where, { }max max
ka=δ δ . 

When components of the parameter error vector are independent random variables with zero 

mean, the variance of ( )yxu ,ε  can be calculated by: 

 ( )( )
( )

( )

( )( ) ( )( )
( )

2

1 1
2 2

var , , var
var ,

, ,

k k

r r

k k
k k

u

a a

a ap x y p x y
x y

P x y P x y
= =

 
 
 = =

∇ ∇

∑ ∑δ δ
ε .  (19) 

Thus, when all the error components have the same variance ( ( ) 2var
ka = δδ σ , like when all the 

coefficients are quantized with the same word length – in bits), we obtain: 

 ( )( )
( )

( )

2

2 1
2

,
var ,

,

r

k
k

u

a

p x y
x y

P x y
δε σ ==

∇

∑
  (20) 

Since these properties were derived using 1st order approximation of the polynomial value, they 

are only valid when the coefficient errors are small. 
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3.2 Analysis of the 3L algorithm 

In section  3.1 we analyzed the sensitivity of the zero-set to small changes in the coefficient 

vector. This analysis holds for points on the zero-set of the implicit polynomial.  

When the fitting of an IP to the given data is good, the value of the polynomial at the data points 

is close to zero. Thus, instead of checking the sensitivity at points on the zero-set, the sensitivity 

may be examined at the data points. This substitution allows the evaluation of the maximal error 

resulting from coefficient changes without having to find the zero-set of the fitting polynomial. 

Of course, this substitution should be made only when the fitting is sufficiently tight. 

Therefore, assuming that the 3L algorithm produces tight fitting, the error for each data set point 

n  is bounded by (18). 

The expansion and shrinking operations used by the 3L algorithm (when done very tightly 

about the original data set) is equivalent to differentiation of the polynomial. According to the 3L 

algorithm, constant values of the polynomial ( ε± ) are required at a fixed distance d  from the 

data set. This implies a requirement for constant derivative values in the direction perpendicular 

to the data set, leading to a constant gradient value near the data set points: 

( ), ,   1,2,..., .∇ = =a n nP x y n N
d
ε  

 
The maximal error for each data points is therefore bounded by: 

  

( ) ( ) ( ) ( )max
max

1 1

, , ,
,

r r

u n n k n n k n n
k ka n n

dx y p x y p x y
P x y

δε δ
ε= =

≤ =
∇ ∑ ∑  (21) 

  

It is clear from (21) that the 3L algorithm yields different error bound values at different data 

points, depending on the value of the monomial vector ( )nn yxp ,  at each data point. In section  4 

we derive algorithms that aim to produce constant error bound values at all the data points. 
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4 Stable Fitting Algorithm 

In this section we use the results of section  3.1 to construct improved fitting algorithms. Our 

goal is to obtain a polynomial with a better zero-set stability than the 3L algorithm, w.r.t. 

changes in the coefficients. 

We begin by modifying the original 3L algorithm. This modification comprises the 

replacement of the expansion and shrinking operations with differentiation of the polynomial. 

The motivation for and the description of this modification are presented in section  4.1. In 

section  4.2 we continue by modifying the fitting cost function by the polynomial to achieve 

desired stability properties. Section  4.3 describes the extension of the results to 3D polynomial 

fitting of surfaces. 

4.1 Modification of the 3L algorithm 

In the 3L algorithm, to achieve a solution that tightly fits the data, it is needed to generate the 

internal and external data sets close to the original data points. This implies that for tight fitting 

results ε  and d (defined in subsection 2.1.1) should approach zero. 

If we attempt to satisfy this demand and examine the results of the least squares solution 

( )( )1−
= TT

LS MMMba , we would notice that the factor ( ) 1−TT MMM  heads to infinity while b  

goes to zero. This means that small numerical errors, resulting from inverting the matrix ( )TMM  

or from the process of creating the internal and external data sets, will be manifested by large 

fitting errors. 

Fitting attempts have shown that it is possible to choose the value of the parameter d  at about 

5% of the geometric size of the object described by the data and obtain stable results. Smaller 

values of d  (which are desirable for obtaining a tighter fit) yield less stable fitting results.  

Choosing large values for the parameter d  can also cause problems of the type seen in Fig. 3: 
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Original data set

New external
data set

New internal
data set

 

Fig. 3: Demonstration of possible expansion and shrinking results when a large value of d , 

relative to the object size, is used. 

 

As seen in this example, choosing a large value of d  may lead to the generation of conflicting 

requirements if the involved sets (original, internal and external) overlap, thus leading to poor 

fitting results. 

We describe here a method for replacing the added sets by explicit differentiation of the 

polynomial. The motivation for this replacement is as follows. 

The basic solution, including the expanding and shrinking of the original data points and the 

solution of (9), is actually an implementation of an approximated differentiation. Fig. 4 

demonstrates the location of the added internal and external sets and the values of the 

polynomial at these sets. This figure also shows how the required values generate an implicit 

requirement for the value of the derivative of the polynomial in the direction perpendicular to the 

original data set. 
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Perpendicular
Direction

Polynomial
Value

Tangent Direction
(entering page)

d

d

Pa(x2N+n,y2N+n) =

Approximate Implicit
Derivative

Pa(xn,yn) =0
Pa(xN+n,yN+n) =  -

 

Fig. 4: View of added internal and external points from the tangent direction at ( )nn yx ,  

 

By replacing the numerical approximation of the differentiation operation (implemented via 

the expansion and shrinking of the data) with an explicit analytical differentiation of the 

polynomial, we avoid the numerical difficulties in the original 3L algorithm. 

     We begin by calculating the differentials of the monomial in both axes. The vectors 

( ) ( )nnYnnX yxpyxp ,,,  denote the derivatives with respect to x and y , respectively, of the 

monomial vector at point ( )nn yx , : 

 

( ) ( ) ( )

( ) ( ) ( )

,

,

, ,

, ,

X n n

Y n n

n n

n n

x x y y

x x y y

d
p x y p x y

dx
d

p x y p x y
dy

= =

= =

=

=
 (22) 

Multiplying the derivatives of the monomials by the coefficient vector yields the respective 

derivatives of the polynomial according to: 

 

( ) ( ) ( )

( ) ( ) ( )

,

,

, ,

, ,

T
X n n

T
Y n n

n n

n n

a

a

x x y y

x x y y

d
P x y a p x y

dx
d

P x y a p x y
dy

= =

= =

=

=
 (23) 

We attempt to bring the polynomial differential at the location of the original data set points to 

the direction of the line locally perpendicular to the data set near each data set point (see Fig .5). 
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The angle relative to the X  axis of the perpendicular vector is denoted by nα , as shown in Fig. 

5, which also shows that in order to calculate nα , we fit a straight line (1st order polynomial) to 

the points about the data point ( )nn yx ,  under consideration. 

Perpendicular
angle

- Neighboring Data points
- Data point n

wn

vn

n

 

Fig .5: Fitting a 1st order polynomial to 7 points about the point ( )nn yx ,  

 

The vectors [ ] [ ]NN wwwvvv ,...,,,..., 11 ==  (where N is the number of points in the data set) 

contain the elements of the perpendicular vectors for each of the data set points. Each pair of 

elements ( )nn wv ,  in ,  ,v w  is a unit vector pointing in the direction that is locally perpendicular 

to the data set at each point n  (i.e., to the straight line approximation). 

Having estimated nα  at each point n , from the data set, we can calculate the components of the 

vectors , ,v w  at each data point from the relations: 

 

( )

( )
( )

( )nn

nn

nn

n
n

n

d
w

d
v

d
wv

tg
w
v

αε

αε

ε

α

cos

sin

22 =

=
⇒










=+

=
 (24) 

The values of b  and M  in (9) determine the value of the polynomial and its gradient. In 

order for the gradient of the polynomial to be perpendicular to the data set, and have an absolute 

value of 
d
ε  (as seen in Fig. 4), and to keep the value of the polynomial at the location of the data 

points equal to zero, b and M  become: 
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[ ]
[ ]YX MMMM

wvb

0

0
=

=
 (25) 

where, 
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 (26) 

The LS solution in (9) can now be used with the above expressions for b  and M . 

 In the 3L algorithm, the required value of the gradient at each data point is set to a constant 

value of 3  / dε . Equation (9) can, therefore, be written as: 

 ( ) 1−
= TT

normLS MMMb
d

a ε
 (27) 

where, in the vector normb  the elements of vectors , ,v w  in b  are replaced by the normalized 

elements  , , , norm n norm nv w , satisfying  

 

 
( )

( )

( )
( )

,

,,

,2 2
, ,

sin
cos

1

norm n
n

norm n nnorm n

norm n n
norm n norm n

v
tg vw

w
v w

α α
α


=  = ⇒ =+ = 

 (28)  

 

Changing the scale value / dε  in (27) does not affect the location of the zero-set of the 

polynomial and is therefore permissible. When allocating bits for each coefficient, we scale the 

coefficients anyway, so that the largest coefficient equals 1. Since most often scaling is involved, 

we simplify notation by ignoring the constant - / dε  in (27). 

 

                                                 
3  This needs to be the absolute value of the gradient. However, the sign of the gradient should 

remain constant at all the data points. 

 



17/32 

4.2 Improved fitting algorithms 

 In order to obtain an optimal solution to the fitting problem one needs first to define the 

criterion according to which the optimization process would be carried out. 

We are interested in obtaining a coefficient vector a  that produces a polynomial with two 

properties:  a) best fit to the data ( ( ) 0, =nna yxP ), b) minimal deviation due to changes in the 

coefficients. 

Using the error bound in (18) with a maximum coefficients error of maxδ  we look for a 

polynomial which minimizes 
( )

( )
max

1

,

,

r

k n n
k

a n n

p x y

P x y

δ
=

∇

∑
 for each of the data set points. 

The first requirement also implies that the tangent direction of the polynomial equals the tangent 

direction of the data for each of the data set points. This is due to the fact that the gradient of the 

polynomial is perpendicular to the zero-set. This leads to the requirement:  

 
( ) ( ) ( )n

nnanna tg
x

yxP
y

yxP
α=

∂
∂

∂
∂ ,,

 (29) 

where nα  is the angle of the local perpendicular to the data set about point n  located at ( )nn yx ,  

- see Fig .5. 

We denote the coefficient vector that best achieves these requirements as OPTa . 

Since no data point has priority over any other point (if no error weighting is used), we can 

limit the maximal fitting error, due to changes in the coefficients, to a constant value by 

requiring that the value of 
( )

( )
max

1

,

,

r

k n n
k

a

p x y

P x y

δ
=

∇

∑
 would be the same for all the given data points, 

i.e., for Nn ,...,1= . Since the value of this constant does not affect the optimization, we require 

the following: 
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 ( ) ( ) NnforyxpyxP
r

k
nnka ...,,1,,

1
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The LS solution for the requirements presented above can be calculated within the framework 

of the solution described in section 3.1. Modifying (24) according to the requirement in (30) 

yields:  
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which upon substitution into (25) yields a solution that we denote as the Min-Max solution. 

Using the same formulation, we can consider a minimum variance criterion that would minimize 

the variance of the error. Modifying (24) as shown in (32) and substituting in (25) yields a 

solution that we denote as the Min-Var solution. 
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4.2.1 Adding weights to data points 

The above formulation was done with the assumption that all the data points have the same 

priority - in terms of goodness of fit. Prioritizing the data points (i.e., giving different weights to 

the errors at different points) yields the following cost function: 

 T
WWW eeE =  (33) 

where, generalizing (6), 

 ( ) WbMWaWbMaeW −=−=  (34) 

Here W  is a 3 3N N×  diagonal weighting matrix whose diagonal elements are the relative 

weights. I.e., the diagonal elements 1,..., N  are the weights for the zero fitting errors, and 

elements 1,..., 2N N+ and 2 1,...,3N N+  are the weights for the sensitivity 
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Replacing  by aM aMW  and  by b bW , the LS solution in (9) becomes: 

 ( ) ( ) 1221 −−
== TTTTTT

WLS MMWMWbMMWWMWWba  (35) 

The selection of the weights depends on the application and fitting goal. If some points have 

priority over others, than both the zero values and gradients of these points should receive 

greater weight values than those of other points. E.g., if point m  has priority over point l  than  

 

( ) ( )
( ) ( )
( ) ( )

, ,

, ,

2 , 2 2 , 2

W m m W l l

W m N m N W l N l N

W m N m N W l N l N

>

+ + > + +

+ + > + +

 (36) 

However, the fitting can also be optimized to produce global characteristics. Choosing large 

values for the first N elements, gives preference to a good fit with less regard to the sensitivity, 

while choosing large values for the second and third N  elements gives preference to a stable fit 

on the expense of its tightness. 

4.3 Extension to 3D fitting 

The algorithms presented above for 2D curves can be extended to 3D space for fitting 

surfaces of 3D bodies. 

The development of the fitting algorithms for 3D bodies follows the procedure presented above, 

with the following modifications: 

• All coordinates are given in 3D. 

• Perpendicular vectors are now calculated as normals to tangent surfaces (instead 

of normals to lines). 

 

The LS solution for the 3D fitting problem has still the form in (9), i.e., 

 ( ) 1−
= TT

LS MMMba  (37) 

but here, 
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where, 

 

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ]NNN

T
Z

T
ZZ

NNN
T

Y
T

YY

NNN
T

X
T

XX

NNN
TT

zyxpzyxpM

zyxpzyxpM

zyxpzyxpM

zyxpzyxpM

,,...,,

,,...,,

,,...,,

,,...,,

111

111

111

1110

=

=

=

=

 (39) 

 [ ] nn
T

nnn ugqwv ⋅=  (40) 

where nu  is a unit vector locally perpendicular4 to the surface near data point n . This vector can 

be computed by fitting a 1st order 3D polynomial (a plane) to the points about point n . The 

coefficient vector of this 1st order polynomial is in fact the desired vector nu . 

ng  is calculated according to the selected fitting algorithm: 
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 The monomial differentials ( ) ( ), , ,  , ,X n n n Y n n np x y z p x y z  are as defined for the 2D case and 

( )nnnZ zyxp ,,  is the differential of the monomial vector in the Z direction for data point n . 

4.4 Summary of fitting algorithms 

The following tables summarize the different fitting algorithms presented in this section, for 

fitting both 2D curves and and 3D surfaces. 

 

 

                                                 
4 According to (2), the monomial vector is perpendicular to the zero set of the polynomial. 
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Table I: Summary of 2D Min-Max and Min-Var fitting algorithms 
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    Table II: Summary of 3D Min-Max and Min-Var fitting algorithms 
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5 Simulation Results 

In this section we present simulation results of the 3L fitting-algorithm and of the proposed 

Min-Max and Min-Var  algorithms, derived in section  4. Further detail can be found in [19].  

5.1 Sensitivity to coefficient quantization 

In this subsection we examine by simulations the sensitivity of the algorithms presented here 

to coefficient changes. Quantization of the coefficients to the closest integer gives only a single 

instance of the coefficient error vector and does not allow a statistical analysis of the error 

properties due to quantization errors. We use, therefore, uniformly distributed random noise to 

simulate the effects of quantization. The results of this test would indicate which algorithm 

yields more robust fitting results under coefficient quantization.  

An object whose boundary is shown in Fig. 6, comprising of 204 data points, was used to test 

the 3L, Min-Var, and Min-Max algorithms. 

 

 -1.5  -1  -0.5  0  0.5  1  1.5
 -1.5
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 0

 0.5

 1

 1.5
2D object boundary

 

Fig. 6: Object boundary used in simulations 
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Tables III(a) and III(b) compare the errors obtained using the examined fitting algorithms for the 

boundaries of the tested object, quantized with several different number of bits per coefficient. 

The same random noise, having a uniform distribution in the range corresponding to the least 

significant bit (LSB) in the binary representation of the coefficients, was added to the coefficient 

vectors obtained via each fitting algorithm. 500 independent error vectors were examined in this 

test. For each algorithm two error measures were considered: 

 2

1

N

RMS n
n

E e
=

∑ ;   { }1max ,...,MAX NE e e  (42) 

where the error ne for each data point is the distance between the nearest point on the polynomial 

zero-set and the data point ( )nn yx , . 

The mean value and variance (over the different noise vectors) of these error measures are 

shown in Table III(a) and Table III(b). 

 

Table III: Comparison of error statistics for the 3L, Min-Var, and Min-Max fitting algorithms 

(a) 12th order polynomial and 16bits coefficients 

Algorithm → 3L Min-Var Min-Max 

Error Measrure ↓ Mean Variance Mean Variance Mean Variance 

RMSE  0.04 0.034 0.02 0.003 0.019 0.0033 

MAXE  0.15 0.22 0.046 0.007 0.044 0.015 

 

(b) 4th order polynomial and 8bits coefficients 

Algorithm → 3L Min-Var Min-Max 

Error Measure ↓ Mean Variance Mean Variance Mean Variance 

RMSE  0.0415 0.0021 0.0352 0.0017 0.0317 0.0017 

MAXE  0.1132 0.0258 0.0979 0.0232 0.0795 0.0348 
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 (c) 4th order polynomial and 6bits coefficients 

Algorithm → 3L Min-Var Min-Max 

Error Measure ↓ Mean Variance Mean Variance Mean Variance 

RMSE  0.042 0.001 0.035 0.0007 0.032 0.0008 

MAXE  0.11 0.007 0.097 0.0063 0.079 0.0088 

 

 

By examining the above three tables, it is evident that using different fitting criteria results in 

different performance. The original 3L algorithm does not define any stability goal and therefore 

achieves no best score in any of the tests. The mean error is minimal when the Min-Max 

algorithm is used. This result is expected because the fitting criterion demands the lowest 

maximal error and therefore also leads to a minimal mean error. Accordingly, the error variance 

for both objects is lowest for the Min-Var algorithm. This result is expected because the criterion 

minimizes this quantity.  

5.2 Plots of sensitivity function 

In this subsection the behavior of the sensitivity function obtained by the different algorithms 

examined above is graphically demonstrated. The boundary shown in Fig. 6 was used in the 

simulations of this section. We use a relatively simple shape as it allows a clear illustration of the 

fitting errors characteristics due to coefficient quantization. 

The values of the sensitivity function for each point of the data set was calculated, using the 

polynomials obtained by the different fitting algorithms examined. The fitting results by 8th order 

polynomials and the values of the sensitivity function are plotted in Fig. 7(a1, b1, c1). The 

sensitivity function determines the change in the location of the zero-set, in the direction 

perpendicular to the desired zero-set, due to changes in the coefficients. Therefore, the values of 

the sensitivity function are plotted in Fig. 7 as vectors that are perpendicular to the zero-set, with 
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a length proportional to the value of the function. For plotting purposes the values of the 

sensitivity function were normalized (divided by an appropriate fixed number). As seen in Fig. 7, 

all three algorithms produced good fitting results when the coefficients are not quantized. This is 

because the specific object boundary is relatively simple for an 8th order polynomial. Yet, it is 

clear from the results demonstrated in Fig. 7 that the 3L algorithm is the most sensitive of the 3 

examined algorithms and that the Min-Max algorithm obtains the best results. 

  

5.3 Fitting a 3D surface 

 
Fig. 8 shows two faces of a 3D object (left column – front view;  right column – back view), 

with the top row displaying the original object, and the next rows - the fitting results with the 3L, 

Min-Var and Min-Max, algorithms, respectively. The improvement in fitting over the 3L 

algorithm, especially by the Min-Max algorithm is clearly seen. This is also manifested by the 

root-mean-squared (RMS) values of the distances between the input data points and the zero set. 

The values obtained are: 3.67, 3.5, and 1.91, for the above examined three algorithms, 

respectively. 
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Fig. 7: Sensitivity and fitting errors of polynomial zero-sets for the 3L, Min-Var, and Min-  

Max algorithms: (a) Upper row – 3L algorithm, (b) Middle row – Min-Var algorithm,  

(c) Lower row – Min-Max  algorithm. 

Left column (1) – Coefficients are not quantized.   

Center column (2) –18 bits coefficient quantization.  

Right column (3) – 20 accumulated zero-sets with noise added to coefficients. 

Noise has independent samples from a uniform distribution with a variance of 1.1e-6 (LSB in 18 bits). 
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Fig. 8: 3D Fitting results: Left – Shape from front, Right – Shape from back. 
Top row – Original data; Second row – fitting results with 3L algorithm; Third row – fitting results 

with   Min-Var algorithm; Bottom row – fitting results with Min-Max algorithm 
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6 Summary and conclusions 

In this paper we introduced an approach for robust fitting by implicit polynomial of 2D curves 

and 3D surfaces that is based on reducing the sensitivity of the fitting polynomial zero-set to 

coefficient changes. 

An application of implicit polynomials to contour coding had brought the subject of 

sensitivity to coefficient quantization to our attention. We began our development with a study 

of the sensitivity of the zero-set of implicit polynomials to coefficient quantization obtained by 

existing fitting algorithms. The analysis that we provide explains the differences in stability 

between the examined fitting algorithms and shows why the 3L algorithm out-performs earlier 

algorithms. We provide a numerical tool, rather than just an intuitive explanation.  

A conclusion from the sensitivity analysis is that the 3L fitting algorithm could be still greatly 

improved, in terms of fitting tightness and stability, by adding stability considerations to the 

fitting process. In this paper we show the steps in the development of the proposed fitting 

algorithms, aimed at producing implicit polynomials that are tight about the data set and robust 

to coefficient quantization.   

We present two algorithms, denoted Min-Max and Min-Var fitting algorithms. The two 

algorithms exhibit similar performance. The first, the Min-Max algorithm, minimizes the 

maximal error due to coefficient quantization. The second algorithm, Min-Var, minimizes the 

error variance due to coefficient errors. Which algorithm should be used depends on the 

application. For example, in contour coding applications, where the coefficients are quantized 

and the maximal displacement of the zero-set should be minimized, the Min-Max algorithm is 

more effective. We also show how the proposed algorithms can be modified to support fitting of 

3D data.  

Although the development of the proposed fitting algorithm was motivated by an image 

coding application, it was found to achieve better fitting than the 3L algorithm, even when the 
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coefficients are not quantized. We have demonstrated that uniform sensitivity to coefficient 

errors for all the data points, leads to improved fitting. The proposed fitting algorithms could 

therefore have an advantage in all the applications that use implicit polynomial fitting, such as 

object recognition, contour coding, computer graphics, CAD and others. 
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