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Abstract— In this paper we refer to the correlation analysis 

between the Non-Local Means (NLM) dissimilarity elements 
within a given search region. This analysis is required for a more 
accurate determination of a model-based adaptive search region 
that we introduced earlier. We explore three levels of correlation 
according to the degree of patches overlap and explain how this 
analysis can be used in our model-based NLM approach.   

Index Terms—Non-Local Means, Dissimilarity correlation, 
Adaptive search region.  

I. INTRODUCTION 
In recent years, patch-based methods have drawn much 

attention in the image processing community. In 2005, Buades 
et al. [2] introduced the Non-Local Means (NLM) denoising 
algorithm, which takes advantage of image redundancy by 
comparing local neighborhoods within a defined search region. 
Each pixel value is estimated as a weighted average of all other 
pixels in the search region. These pixels are each assigned a 
weight that is proportional to the similarity between their local 
neighborhood and the reference pixel local neighborhood.  

The search region is usually a rectangular neighborhood, 
centered at the pixel of interest (POI), which may include 
pixels whose original gray value do not match the original 
value of the POI. Consequently, their participation in the 
averaging process degrades denoising performance. To 
eliminate their effect, researchers (e.g., [5],[7]) suggest creating 
an adaptive search-region, which excludes those dissimilar 
pixels. These methods involve heuristics and threshold setting, 
thus require parameter setting. Moreover, they restrict the 
search region to be contiguous, which may be inappropriate for 
regions that contain texture.  

In [1], we presented a novel model-based method, which 
defines a set of similar pixels to the POI, from the initial search 
region, using the statistical distribution of the NLM 
dissimilarity measure values. We refer to the dissimilarity 
measure that characterizes the NLM method as a random 
variable and base our proposed approach on the variance of the 
dissimilarity elements associated with the pixels included in the 
adaptive search region. In addition, we suggested adapting the 
NLM patch-kernel to local structure. Our proposed approach 
was compared to the standard NLM and to other methods that 
use NLM combined with an adaptive search region, and was 
found to provide better denoising results both visually and 
quantitatively.  

The statistical model, presented in [1], was developed under 
the simplifying assumption that the dissimilarity elements in a 
given search region are not correlated. In this paper, we explore 
the correlation between the dissimilarity values of patches in a 
given search region and its effect on the model-based scheme 
presented in [1]. The correlation analysis is important since it 
affects the variance of the dissimilarity elements, thus affecting 
the threshold that determines the adaptive search region. The 
reason that such a correlation exists is that the dissimilarities of 
all the patches in a given search region are computed with 
respect to the same reference patch. Furthermore, some patches 
may overlap each other and/or the mutual reference patch 
itself, contributing further to the correlation.  We compare in 
this work the performance of the two schemes-with and 
without correlation consideration.  

The remainder of this paper is as follows. Section II briefly 
describes the NLM method. The proposed adaptive method is 
concisely described in Section III. Section IV introduces the 
correlation analysis for different cases of patch overlap. 
Section V presents experimental results that compare the two 
schemes – with and without correlation consideration. Finally, 
Section VII presents a summary and concluding remark. 

 

II. NON-LOCAL MEANS IMAGE DENOISING 
This section presents a brief overview of the non-local 

means method [2]. Let X and Y be the original and the observed 
noisy images, respectively. It is assumed that the original 
image is corrupted by Additive White Gaussian Noise 
(AWGN) N with a zero mean and a known standard 
deviation nσ , such that 

( ) ( )2, ~ 0, 1nY X N N σ= +  
Each pixel in the restored image is derived as the weighted 
average of all gray values within a defined search region: 
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where i represents a pixel index, and iS  refers to a rectangular 
search region of size M M× centered at pixel i. The normalized 
weights, which can be referred to as similarity probabilities, are 
defined as: 
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such that ,
i

i i j
j S

W w
∈

= ∑   is a weight normalization factor, ( )id j  

is the dissimilarity measure, and h is the weight smoothing 
parameter that is typically controlled manually in the algorithm 
and set globally. Choosing a very small h leads to noisy results 
almost identical to the input, while a very large h gives an 
overly-smoothed image. The NLM dissimilarity measure 

( )id j  is defined over the corresponding similarity patches as: 
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where ( )iY A  defines a vector of neighborhood pixel values and 

iA  represents a square similarity patch of size p p× centered at 
pixel i (p<M). The similarity patches may overlap within a 
given iS . The vector norm is simply the Euclidean distance, 
weighted by a Gaussian kernel of zero mean and variance a 

with coefficients 2, 1,k k pα ⎡ ⎤∈ ⎣ ⎦ , such that
2

1
1

p

k
k

α
=

=∑ . In practice, 

instead of a Gaussian kernel, simpler kernels are used; a 
Uniform kernel (which assigns the same weights to all the 
pixels within the similarity patch), whose corresponding 
dissimilarity measure is denoted ( )U

id j , and a Box kernel [1] 

whose corresponding dissimilarity measure is denoted ( )B
id j .  

In this paper, the similarity patch is set to be 5x5 (p=5) and 
the search region is set to 11x11 (M=11), as suggested in [6]. 

 

III. MODEL-BASED ADAPTIVE SEARCH REGION 
This section concisely describes the two main innovations 

of our earlier suggested method [1].   

A. Search Region Pixel Classification 
The NLM search region is usually a rectangular 

neighborhood, centered at the pixel of interest (POI), which 
may include pixels whose original gray value do not match the 
value of the original central pixel. Consequently, their 
participation in the averaging process degrades the denoising 
performance. To eliminate their effect, researchers (e.g., 
[5],[7]) suggest creating an adaptive search-region, which 
excludes those dissimilar pixels. These adaptive approaches 
suggest to partition the given search region into two groups, 
based on pixels’ similarity to the POI. These approaches are 
parameter-dependent or restrict the set of similar pixels to the 
POI to be contiguous. In [1], we too propose to partition the 
search region of a given pixel i ( iS ) into two sets: a set of 
similar pixels (with respect to the reference pixel, denoted S

iS ) 
and a complement set of dissimilar pixels, denoted D

iS . 
However, unlike some of the earlier approaches, the set is not 
restricted to be contiguous, and the partition is determined on 
the basis of a statistical model of the NLM dissimilarity 
measure. Similarly to the other approaches, the weighted 
averaging is applied only to the pixels in the set S

iS . 

Our basic assumption relies on the fact that the normalized 
dissimilarity measure, for any patch-kernel being used (see 
eqn. (4)), for pixels included in the set S

iS , is characterized with 
a Chi-Square distribution with 2p  degrees of freedom that can 
be approximated as a Normal distribution, for 2 1p , as sum 
of 2p  independent normal variables. Consequently, the 
following applies for a general patch-kernel: 
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For the particular case of the Uniform patch-kernel, 
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Pixels that are not included in the set S
iS are characterized with 

a normalized dissimilarity whose mean is larger than 1 and 

variance is larger than 
2

2

1
2

p

k
k

α
=
∑ (as explained in [1]).   

We propose to classify the initial search region iS  based on the 
distribution of the normalized dissimilarity measure. In this 
manner, we follow the next steps, using the Uniform patch-
kernel: 

1) Compute the normalized dissimilarity measure for all 
pixels ij S∈ , to obtain ( ) 22U

i nd j σ . 
2) Sort the normalized dissimilarities in an ascending 

order. 
3) Compute Accumulated variance: start with the two 

smallest dissimilarities and compute their variance. 
Then, add another dissimilarity element from the 
sorted list. 

4) Continue with accumulated variance computation 
until the variance of the elements accumulated so far 
exceeds the theoretical variance threshold of 22 p−  
(see eqn. (6)). 

The pixels whose elements were accumulated constitute the 
set S

iS .  

B. Patch-Kernel Type adaptation 
Simulations suggest that the Uniform patch-kernel is more 

adequate for smooth regions, whereas the Box patch-kernel is 
more adequate for texture or edges. Consequently, we suggest 
combining the use of these two kernels based on local 
structure. 

After computing the adaptive search region, we derive its 
normalized cardinality 2S

i ir S M= , where S
iS  refers to the 

cardinality of the adaptive search region of pixel i and 2M  is 
the initial size of the search region. We classify the matrix R , 
whose elements are ir , into two clusters using K-Means, each of 
them is associated with a designated centroid. The pixels 
associated with the larger centroid value are considered part of 
a smooth region, thus their weights are computed using the 
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Uniform patch-kernel. On the other hand, the pixels associated 
with the smaller centroid value are considered part of a texture 
or edge region, thus their weights are computed using the Box 
patch-kernel.  

This adaptation improves the preservation of edges and 
texture and decreases granularity of smooth regions. 

IV. CORRELATION BETWEEN DISSIMILARITIES 
The statistical model in the previous section was developed 

under the simplifying assumption that the dissimilarity 
elements in a given search region iS are not correlated. It is 
important to state that other works, e.g., [7], [8], do not relate 
to any source of correlation between the dissimilarity elements 
and its effect on their statistical properties.  

In this section we consider the correlation between 
normalized dissimilarities of patches in a given search region 
and its effect on the model-based scheme. The reason that such 
a correlation exists is that the dissimilarities of all the patches 
in a given search region are computed with respect to the same 
reference patch iA  . Furthermore, some patches may overlap 
each other and/or the mutual reference patch itself, contributing 
further to the correlation. To simplify the analysis, we first 
consider the correlation due to the mutual reference patch 
(Case 1), assuming no patch overlaps. Then we add the effect 
of overlap between patches, but not with the reference patch 
(Case 2), and finally we address the most general case in which 
overlapping patches may also overlap the reference patch (Case 
3). By arranging the dissimilarities in a vector form, we express 
the correlation between the vector elements via its covariance 
matrix and apply the results to derive the statistical properties 
of the empirical (estimated) variance used in the proposed 
model-based denoising scheme ([1], [9]). For simplicity, the 
following analysis is based on dissimilarities computed using 
the Uniform path-kernel. 

A. Case 1: Correlation between dissimilarities of patches that 
do not overlap each other, nor the reference patch  
This case is illustrated in Fig. 1(a). In this figure, the 

reference patch is denoted iA  and some two compared patches 
denoted ,j kA A for , ij k S∈ . The patches satisfy the no-overlap 
criterion: , , : , ,S

i j k j i k ij k S j k A A A A A A∀ ∈ ≠ ∩ = ∅ ∩ = ∅ ∩ = ∅ . This 
means that these patches do not overlap each other, or the 
reference patch. By definition, the normalized dissimilarity of a 
patch is computed with respect to the reference patch, thus the 
reference patch serves as a mutual member that adds a source 
of correlation between dissimilarities of different compared 
patches. The distribution of the dissimilarity measure remains 
Chi-Square and can be approximated by a Normal distribution. 
The covariance matrix of the normalized dissimilarity elements 

U
id , arranged in a vector form, is as follows [9]:  

( ) ( )2
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U
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⎡ ⎤ ⎢ ⎥= Ε =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

d d d  

The off-diagonal elements of the respective covariance matrix 
refer to the cross-variance between the vectorized dissimilarity 
elements. 
The estimated variance of the normalized dissimilarities, for 
this case, is affected by the correlation term that appears in eqn. 
(7) and its statistical analysis is required for setting the 
accumulated variance threshold, as explained in section III. 
The sorting process deals with a set of normalized dissimilarity 
elements of size , 2, iL L S⎡ ⎤∈ ⎣ ⎦ . The set of sorted elements 

associated with iS  is referred to as a vector U
id  with 

elements ( )( )L
i id mψ , where [ ]1,m L∈  and L

i iSψ ⊆  is a sub-set 

of the global indices of the pixels that are included in the 
search region and satisfy the no-overlap constraint, sorted in 
order of increasing dissimilarity value. 
The estimated (empirical) unbiased variance of a set of L 
dissimilarity elements (constituting U

id ) is defined as: 

( )( )( ) ( )
2

1

1ˆ ˆ , 8
1

L
L

i i
m

V d m B
L

ψ
=

= −
− ∑  

where ( )( )
1

1ˆ
L

L
i i

m
B d m

L
ψ

=
= ∑  is the estimated mean of the 

corresponding vector elements. Since the (unsorted) elements 
of U

id are distributed normally, as expressed by eqn. (6), the 
estimated mean B̂ is a Normal random variable, being a sum of 
Normal random variables. The statistical properties of the 
estimated mean variable at the variance threshold crossover 
point (section III) are as follows [9]:  

( )2
3ˆ ~ 1, 9

2
LB
Lp

⎛ ⎞+
⎜ ⎟
⎝ ⎠

 

As can be seen, the variance of the estimated mean is not 
decaying to zero for large L values. This is due to the non-zero 
correlation between the normalized dissimilarity elements. 
After establishing the statistical properties of the estimated 
mean for the threshold crossing point, we derive the properties 
of the estimated variance. The estimated variance is not 
distributed Chi-Square since the dissimilarity elements are 
correlated. Therefore, we do not know its distribution type, but 
we can derive its mean and variance at the threshold crossing 
point, which are [9]:  

( )2 4
3 9 1ˆ ˆ, 10

2 2 1
V Var V

p p L
⎡ ⎤ ⎡ ⎤Ε = =⎣ ⎦ ⎣ ⎦ −

 

Section V explains the need to estimate the variance of the 
empirical variance.  
The correlation, in this case, causes a decrease in the mean of 
the estimated variance, as expected. Its value decreases from 

22 p−  (eqn. (6)) to 21.5 p− . 
B. Case 2: Correlation between dissimilarities of patches that 

overlap each other, but not the reference patch  
We discuss here the case of similarity patches that overlap 

each other, but not the reference patch, as illustrated in Fig. 
1(b). The compared patches satisfy the following overlap 
criterion: , , : , ,S

i j k j i k ij k S j k A A A A A A∀ ∈ ≠ ∩ ≠ ∅ ∩ = ∅ ∩ = ∅ . 
As in Case 1, the reference patch iA  serves as a mutual 
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member in the dissimilarity between itself and the compared 
patches, thus inducing correlation between the corresponding 
dissimilarity elements. In this case, however, there is yet 
another source of correlation that stems from patches overlap. 
The distribution of the patch dissimilarity elements remains 
Chi-Square and can be approximated by a Normal distribution, 
as presented in eqn. (6). The covariance matrix obtained for the 
dissimilarity elements arranged in a vector form is [9]: 

( ) ( )2

2 0.5 .. 0.5
0.5 2 .. 0.5

0.5 , 11
| | | |

0.5 .. .. 2

U
i

TU U
i iC p O−

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥= Ε = +⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

d d d  

where                 
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O is a matrix obtained due to patches overlap and whose 
diagonal elements are all zero. The off-diagonal elements refer 
the region of overlap between compared patches. For example, 

( ) ( )1L L
i i LOψ ψ is the cardinality of the overlap region between the 

similarity patch associated with the smallest dissimilarity 
( )1L

iψ and the last element in the sorted list L
iψ . The off-

diagonal elements of the respective covariance matrix (eqns. 
(11), (12)) refer to the cross-variance between the vectorized 
dissimilarity elements.  

Similarly to Case 1, we need to analyze the statistical 
properties of the estimated mean variable, at the threshold 
crossover point, in order to analyze the properties of the 
estimated variance, required to set the variance threshold. 
Consequently, the estimated mean B̂   is distributed normally 
with the following properties [9]: 

( ) ( ) ( ) ( )2 4
1 1,

3 1ˆ ~ 1, 13
2 2 1

L L
i i

L L

k s
k s s k

LB O
Lp L L p ψ ψ

= = ≠

⎛ ⎞+ +⎜ ⎟⎜ ⎟−⎝ ⎠
∑ ∑  

The mean of the empirical variance is derived as [9]: 

( ) ( ) ( ) ( )2 4
1 1,

3 1ˆ 14
2 2 1

L L
i i

L L

k s
k s s k

V O
p L L p ψ ψ

= = ≠

⎡ ⎤Ε = −⎣ ⎦ − ∑ ∑  

The variance of the estimated variance ˆVar V⎡ ⎤⎣ ⎦ , in this case, 
involves a complicated development due to the complicated 
form of the covariance matrix (see eqns. (12),(13)). It can be 
seen from eqn. (14) that the correlation term due to the overlap 
between the patches themselves causes a decrease in the mean 
of the estimated variance, compared to its mean in Case 1. This 
decrease, however, is relatively small since it is proportional to 

4 1p− . Moreover, this overlap term has to be computed for 
each explored sub-set in each search region, which makes the 
computation impractical ([9]).  

C. Case 3: Correlation between dissimilarities of patches that 
overlap each other and the reference patch  
We finally discuss here the most general case of similarity 

patches that overlap each other as well as the reference patch, 

as illustrated in Fig. 1(c). In this figure, the selected compared 
patches , ,j k iA A j k S∈ overlap each other, and each one of them 
also overlaps the reference patch iA , satisfying the overlap 
criterion: , , : , ,S

i j k j i k ij k S j k A A A A A A∀ ∈ ≠ ∩ ≠ ∅ ∩ ≠ ∅ ∩ ≠ ∅ . 
Here we get an additional source of correlation, as compared to 
the two previous cases, which is the overlap of the compared 
patches with the reference patch. In this case, the distribution 
of patch dissimilarity is not Chi-Square anymore because not 
all the elements in the summation defining it (see eqn. (4)) are 
independent, in contrast to what was assumed by Buades et al. 
[3] and Thacker at. al [8]. The mean and variance of the 
normalized dissimilarity measure for a Uniform patch-kernel 
are obtained as [9]: 

( ) ( ) ( ),
2 4

21, , 15i j
i i

O
d j Var d j

p p
⎡ ⎤ ⎡ ⎤Ε = = +⎣ ⎦ ⎣ ⎦  

where ,i jO is the set of pixels associated with the overlap 
between the similarity patch jA  and the reference patch iA  and 

the cardinality of the set is denoted ,i jO . The cross-variance 
term (off-diagonal elements of the covariance matrix), is given 
by [9]: 

( ) ( )( ) ( )

( )

, ,k ,2 4

4
, , ,

1 1,
2 2

16
0

i i i j i j k

i j i j i k

Cov d j d k O O O
p p

O p if O O

Otherwise

−

= + + + +

⎧ =⎪+ ⎨
⎪⎩

 

Similar to Case 2, the additional terms are very small and 
their computation is even more complex (a detailed analysis 
can be found in [9], section 5.3 and Appendices B.3, C.3).  
Hence, in the experimental results below we present only the 
correlation effect related to case 1.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1: Schematic presentation of the three cases. (a) Case 1, (b) Case (2), 
(c) Case 3. 

V. EXPERIMENTAL RESULTS 
This section discusses the performance of the correlation-

dependent model-based scheme, introduced in section IV, and 
compares it to the model-based scheme introduced in [1], and 
to the standard NLM, applied with either the Uniform or the 
Box patch-kernels. The difference between the first two 
schemes is based on the effect of the correlation between the 
dissimilarities, within a given search region, on the estimated 
variance based on Case 1 (eqn. (10)) and the no-correlation 
model (eqn. (5)), with the following NLM 
parameters: 5, 11, np M h σ= = = . 

At the beginning of the variance accumulation process (see 
section III), the number of accumulated elements ( )S

iL L S<  is 

relatively small. Consequently, the empirical variance 
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computation is not reliable, as further explained in [9], section 
3.5. In order to compensate for this lack of robustness, we 
suggest modifying the threshold that sets the adaptive search 
region as follows: 

( )ˆ ˆ , 17GTH V f STD V⎡ ⎤ ⎡ ⎤= Ε + ⋅⎣ ⎦ ⎣ ⎦  
where the factor f is set empirically and was chosen to be 0 for 
the no-correlation scheme and 2 for the correlation-dependent 
scheme of Case 1 [9]. 

The following table presents the comparison results for 
different selected images and various noise levels. As was 
shown in [1], the no-correlation scheme is characterized by 
better denoising results, compared to the standard NLM, both 
visually and in terms of PSNR and SSIM. The correlation-
dependent model-based scheme is slightly better than its 
simplified version, mainly PSNR-wise. The PSNR difference, 
for the images and noise conditions presented in the table, is 
maximum 0.04 dB, and is not noticeable visually. 

TABLE I.  QUANTITATIVE COMPARISON   

Image Noise 
STD 

NLM w. 
Uniform 
 
 
PSNR[dB]/ 
SSIM 

NLM w. 
Box 
 
 
PSNR[dB]/ 
SSIM 

No-
Correlation 
(f=0) 
 
PSNR[dB]/ 
SSIM 

Correlation-
Dependent 
(f=2) 
 
PSNR[dB]/ 
SSIM 

Lena 20 30.11 / 0.87 30.25 / 0.87 30.48 / 0.88 30.51 / 0.88 
Baboon 20 24.78 / 0.69 25.54 / 0.74 25.62 / 0.75 25.64 / 0.75 
Barbara 30 26.92 / 0.8 26.94 / 0.8 27.16 / 0.81 27.18 / 0.81 
Pirate 15 30.55 / 0.84 31.02 / 0.85 31.08 / 0.85 31.12 / 0.85 
 

Fig. 2 presents a performance comparison between the two 
model-based schemes and the standard NLM with the Uniform 
patch-kernel, as a function of noise level. The displayed curves 
are the result of averaging over ten explored natural images. As 
observed from the results presented in Table I, the correlation-
dependent scheme is only slightly better, PSNR-wise, than the 
basic (no-correlation) model-based scheme. It is more 
pronounced at low noise levels. The two schemes are better 
than the standard NLM applied using either the Box or the 
Uniform patch-kernel. 

VI. CONCLUSION 
In this work, we have analyzed and explored the effect of 

the correlation between the dissimilarity elements, within a 
given search region, on the variance threshold that is used to 
set the adaptive search region, according to [1]. The 
correlation is analyzed based on the degree of overlap between 
the corresponding patches. We have shown that the 
correlation-dependent model can be simplified if we neglect 
the overlap terms (eqn. (14)) that are impractical to compute. 
Moreover, based on the experimental results, there is no 
quantitative significant difference between the two schemes. 
This implies that computational complexity can be reduced, 
while preserving denoising results in terms of PSNR/SSIM 
and visibility. 

BM3D [4] is considered to be the state-of-the-art denoising 
approach that achieves the best performance over other 
reported image denoising algorithms. However, it is 
computationally expensive and requires multiple parameters 

setting. We suggest integrating our adaptive search region 
method (with no-correlation consideration) in the grouping 
stage of the first phase of the BM3D scheme, and by that 
decrease the computational complexity while preserving the 
quality of the denoising results. Refer to [9], Chapter 7, for 
more details. The overall reduction achieved in our simulations 
is 4.5% on average. 
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Fig. 2: Comparison between three NLM schemes: the blue curve refers to the 
correlation-dependent scheme with f=2, the dashed  red curve refers to the no-
correlation scheme with f=0, and  the black curve refers to the standard NLM 
using the Uniform patch-kernel. 
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