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Abstract

Vector-Quantization (VQ) is an effective and widely-
implemented method for low-bit-rate communication of
speech and image signals. A common assumption in the
analysis of VQ systems is that the compressed digital
information is transmitted through a perfect channel. Under
this assumption, quantizing distortion is the only factor in
output signal fidelity. However, in physical channels, errors
may be present and degrade overall system performance. In
this paper, the effect of channel-errors on a VQ system is
studied. Bounds on the distortion in general VQ schemes
due to memoryless-channel errors are presented. The paper
concludes with numerical results and asymptotic properties
for the special case of scalar-quantizers and the Binary-
Symmetric-Channel.

L. _Introduction

Vector-Quantization (VQ) (or Scalar-Quantization as a
special case) is a method for mapping signals into digital
sequences. This sequences are transmitted or stored by a
digital media. Motivation for using VQ is derived from
information-theory [1]. It is proved that increasing the
dimension of input vector results in higher compression
ratios (lower bit-rates). On the other hand higher dimension
causes longer input to output delay time and increased
implementation complexity.

VQ can be found in waveform coding, and in particular
for speech and image coding [2]-[9].

In most Signal Processing applications the source emits
signal samples over an infinite alphabet. These samples
should be sent to the destination with the highest fidelity

x(m) y (n)

possible. The VQ encodes the source output into a digital
sequence that is transmitted through the channel. The
decoder's goal is to reconstruct source samples from the
digital sequence. Analog sources cannot be represented
perfectly by digital information, so some distorrion must be
tolerated. Throughout we assume that the VQ implements
the so called Block-Codes, in which a fixed number of
source samples is represented by a single channel symbol.
The general structure of a VQ-based transmission system is
shown in Figure 1.

In every channel transmission the VQ encodes a X-
dimensional vector of source samples into a channel symbol
y=g(x), where x = (xo,xl,...,x,(_l)r is a block of samples
which takes on values from TX, where % denotes the
source alphabet. The index n represents the channel time
index. A channel symbol y is taken from a finite channel
alphabet which, without loss of generality, is represented by
indices i=0,l,...,N —1. The channel output z(n) is a
random mapping of its input. The decoder converts a
channel symbol into an output reconstruction vector
£ = ¢(z), that should be "close" to the input vector. The set
of all reconstruction vectors (or code vectors) is the VQ
codebook - B

B={%:£=0(),i=0,1...N -1} m
The channel transmission rate is:

R= -Il?log2 N bits/source symbol 2)

Next, we define a distortion measure d(x.&) which
assigns a cost to the encoding of an input vector by a
reconstruction vector. We assume a context-free distortion-
measure, which does not depend on source and
reconstruction vectors at other instances. Distortion
measures of practical interest are, for example, Squared
Error Distortion and the Likelihood measure used in speech
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Figure 1 - General Vector-Quantization system
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coding [12].

Full knowledge of source statistics is assumed. The
performance of the system is measured in terms of the
average distortion:

D= E[d(x,£)] 3)
where E[-] denotes the expectation operator. In practice, a
long-term average is used
. 18: -
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In most VQ applications the channel is assumed to be
noiseless, so that no errors occurs in transmission, i.e.,
z{n)=y(n), Vn. This assumption is based upon using a
channel encoder-decoder pair which realizes a perfect
channel. This is possible as long as the channel capacity is
not exceeded.

Upon knowledge of source statistics, Lloyd's algorithm
[3] may be used to design a VQ. The design of a VQ is
based in practice on a training sequence, which is a "long"
succession of typical source outcomes. In this case no
knowledge of the source statistics is assumed. The design
of a VQ can be done using the LBG algorithm [10]. The
LBG algorithm is important for real world applications,
where a statistical probability model of the source is not
available.

The paper is organized as follows. In section II we
describe channel-errors and their effect on VQ-based
systems. In section III a general method for obtaining tight
upper and lower bounds for the average channel-error
distortion is described. Numerical results for Scalar-
Quantizers and the Binary-Symmetric-Channel (BSC) are
presented in section TV,

IL._Channel errors

In the discussion so far we have assumed that the
channel is noiseless, i.e. channel input and output are
identical z(n)=y(n), at any instant n. This may be
accomplished by using Error Control Coding [1],[2].
Redundancy is introduced by a channel-encoder and used
by a channel-decoder to achieve a desired error probability.
In some applications channel-coding is not utilized because
of complexity or bit-rate requirements. In such cases the
perfect channel assumption may not be justified, and if a
channel-error occurs, 2 wrong codevector is selected.

In [11], for example, an experiment of coding speech for
Mobile Satellite communication is described. The coder
examined used a pulse-excitation codebook. In order to
minimize the degradation due to channel errors, the
codebook indices were reorganized by iteratively switching
the position of two code vectors seeking to reduce the
distortion.

The effect of channel errors on specific systems can be
found in [13]-[18]. Several methods for improving VQ

performance under channel error are presented in [19]-{26].

The algorithms for improving the performance of VQ
coding systems under channels errors are based on the
following two approaches:

Redesign of the VO cells: [19]-[22] In the presence of
channel errors, and given the transmitted symbol, the
received symbol is a random variable. In the process of VQ
design, the distortion measure can be modified to take
channel-errors into consideration so that every possible
output vector is taken into account for every input vector.
This modifies the partition of the space of input vectors.

Assignment of channel symbols: [23]-[28] As mentioned
above, a channel error causes an incorrect decoding of a
codevector. If this vector is not "far” from the codevector
that should have been decoded, then a small distortion is
caused. This heuristic argument motivates the search for
optimal codevector indices assignment. This is a problem of
a combinatorial character. For example, a 4-bit VQ has
16! =2-10" possible assignments.
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We turn now to analyze the distortion of a VQ system
due to channel-errors. In the present analysis we assume a
Discrete-Memoryless-Channel (DMC) with the same input
and output alphabet i=0,1,...,N—1. A DMC can be
described by a channel transition matrix T whose entries are
the conditional probabilities of the channel outcome given
the input symbol.

{1}; =Pr{z(n) = j| y(m) =i} ®)
Given a distortion measure, the average distortion is:
N-IN-]
D=E{d[x,1]}= 2 Y Pr{z=j.y=i}d[e()) o()] ©
Substituting the channel transition matrix
N-1 N-1
D=y A Y Prlz=jly=i}d[o(j) 0()]=

i=0 j=0
N=1 Nt

= 2B 2T, d[o()) ()] = @)

= tracc[P~T~AT]

where P, is the probability of the i-th codevector
P =Pr(x,)=Pry=i], and P=diag{P}. Distortion
between codevectors are the entries of {A}, = d[q)(i), o(j)}-
Note that in (7) we assume knowledge of the codebook
used by the VQ, particularly the channel-symbol assignment
to every codevector.
For the special case of the Binary-Symmetric-Channel
(BSC) the transition matri)g is s
T=q"(1-q) " ®



“where 81 is the Hammmg distance between the binary
representation of the integer numbers / and j, and N = 2k,
The parameter ¢ is the channel Bit-Error-Rate.

In using a VQ over a noisy channel, the distortion caused
by channel-error is of interest. We propose a simple
technique for evaluating upper and lower bounds on the
average distortion over input vector probabilities.

The bounds are found from (7) by minimizing/
maximizing the average distortion by the following
optimization problcm.

min /maxzﬁ Nz Ty d$(/). 9]
€
subjectto: Y A=

P20 , i=01..,N~-1

This is a Linear-Programming (LP) problem with one
constraint. The optimal solutions (minimal and maximal) are
known to belong to the finite set of Basic-Feasible-
Solutions [27]. The k-th basic solution is

w1 i=k

f {0 i®k (10)
for k=0,1...,N—1. The lower and upper bounds are
found by substituting (10) into (7) and selecting the
minimal and maximal solutions. Note that both bounds are
realized by deterministic sources.

For the BSC, asymptotic results may be obtained for
small bit-error-rates. In this case the probability to obtain an
error in more than one bit of the codeword index is
negligible. Hence, in this case,

‘111_13;. _ ZZ—IP zzilqgv—l (1 L'5q d[q)(])v ¢(l)] =
o a
= 2R Yd[o0)). 0]

For g — 0 distortion is linearly proportional to g. The ratio
can be bounded over £ in a similar LP optimization
argument.

For the special interesting case of a Scalar-Uniform
Quantizer in the interval {-1,1], 2's Complement (2'C)
code, Squared-Error distortion, and the BSC, the result is
quite simple. Note that the weight of the most significant bit
in 2'C code is 1. The second significant 1/2, and so on.

Thus, from (11), )
it -3 57 -5 o

-0 q i=0 m=0
The series in (12) converges rapidly and equals to 1.328 for
a 4-bit quantizer and to 1.333 for 8-bits.

As mentioned, upper and lower bounds are realized by a
deterministic source. One may add more constraints to the
LP problem in order to find tighter bounds for particular

“cases. For example, an energy constraint can be added in
the case of Scalar-Quantizer

mm/maxZP 2 [ ,q>(i)]

i=0 j=0

N-1
213:1; Y PY()<E (13)
i=0 i=0
P20 , i=0L..,N-1
where E is the energy-constraint parameter. This problem
has (;] basic solutions to evaluate.

subjectto:

1Y, Numerical resnlfs

Upper and lower bounds on the average distortion were
computed for some special cases. For the 8-bit Scalar-
Uniform-Quantizer in the interval [-1,1], 2'C code,
Squared-Error distortion, and the BSC, bounds are plotted
in Figure 2. The linear approximation D=J/.333q is shown
by a dashed line.
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Figure 2 - Bounds on the MSE of an 8-bit linear quantizer,
2's complement code, and BSC

It is clearly seen that the bounds coincide even for a bit-
error-rate as high as 0.1. The one-bit-error approximation
(12) is therefore justified for those values.

For the same quantizer with Gray code representation,
the bounds are not so close, as shown in Figure 3. In order
to achieve tighter bounds, energy constraints were added.
The lower bound was not affected by the constraints. The
reason is that the lower bound is generated by the
deterministic source that emits the value - 0.0. This source
complies, of course, with every energy limitation. Upper
bounds are plotted with E as a parameter. Similar graphs for
the p-law coder {5] are shown in Figure 4.

Y. Conclusions
We have introduced a simple method to bound the
distortion of a VQ-based system under channel errors. This
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Figure 4 - Bounds on the MSE of an 8-bit, yi-law
quantizer, and BSC

method involve standard LP computation. It was shown that
upper and lower bounds are realized by deterministic-
sources. We also presented how energy constraints can be
added to obtain tighter bounds. For a scalar quantizer and
the BSC, numerical and asymptotic results were shown. An
interesting property of the uniform scalar quantizer with 2'C
code is that the upper and lower bounds coincide for a wide
range of channel bit-error-rates. For other codes the gap
between the two bounds can be reduced by introducing
energy constaints.
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