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Abstract

In this work, a shifted wavelet packet (SWP) library, containing all the time shifted wavelet packet bases, is defined.
A corresponding shift-invariant wavelet packet decomposition (SIWPD) search algorithm for a ‘best basis’ is introduced.
The search algorithm is representable by a binary tree, in which a node symbolizes an appropriate subspace of the
original signal. We prove that the resultant ‘best basis’ is orthonormal and the associated expansion, characterized by the
lowest information cost, is shift-invariant. The shift invariance stems from an additional degree of freedom, generated at
the decomposition stage and incorporated into the search algorithm. The added dimension is a relative shift between
a given parent node and its respective children nodes. We prove that for any subspace it suffices to consider one of two
alternative decompositions, made feasible by the SWP library. These decompositions correspond to a zero shift and a2~
relative shift where ¢ denotes the resolution level. The optimal relative shifts, which minimize the information cost, are
estimated using finite depth subtrees. By adjusting their depth, the quadratic computational complexity associated with
SIWPD may be controlled at the expense of the attained information cost down to O(N log, N). © 1997 Elsevier Science B.V.

Zusammenfassung

In dieser Arbeit wird eine Bibliothek von Zeitverschiebungs-Waveletpaketen (SWP) definiert, die sidmtliche
zugehorigen SWP-Basen enthilt. Ferner wird ein entsprechender Suchalgorithums fiir die verschiebungsinvariante
Waveletpaketzerlegung (SIWPD) zur Bestimmung der ‘optimalen Basis’ vorgestellt. Als Optimierungskriterium wird
dabei eine Informations-Kostenfunktion benutzt. Der Algorithmus 148t sich als bindrer Baum darstellen, bei dem die
Knoten geeignete Unterrdume des urspriinglichen Signals symbolisieren. Wir zeigen, daB8 die resultierende ‘optimale
Basis’ orthonormal und die mit Hilfe dieser Basis gewonnene Darstellung des Signals verschiebungsinvariant ist. Diese
Signalzerlegung ist durch die geringsten Informations-Kosten charakterisiert. Die Verschiebungsinvarianz resultiert aus
einem zusdtzlichen Freiheitsgrad, der sich widhrend der Zerlegungsphase ergibt und im Suchalgorithmus mitberiicksich-
tigt wird. Die zusiitzliche Dimension entspricht einer relativen Verschiebung zwischen einem gegebenen Elternknoten
und seinem zugehorigen Kindknoten. Wir zeigen, daB es mit Hilfe der erstellten SWP-Bibliothek fiir jeden beliebigen
Unterraum hinreichend ist, lediglich ein oder zwei alternative Zerlegungen in Betracht zu ziehen. Diese Zerlegungen
entsprechen einer Nullverschiebung und einer relativen Verschiebung von 27 Elementen, wobei # den Auflosungsgrad
bezeichnet. Die optimalen relativen Verschiebungen, die das Informationskostenkriterium minimieren, werden durch
Unterbdume endlicher Tiefe geschitzt. Durch Verinderung ihrer Tiefe kann die quadratische Rechenkomplexitit der SIWPD
auf Kosten der erzielten Informationsgiite auf die Ordnung N log, N reduziert werden. © 1997 Elsevier Science B.V.
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Résume

Dans ce travail, nous définissons une librairie de paquets d’ondelettes décalées (POD), contenant toutes les bases de
paquets d’ondelettes décalées en temps. On introduit ensuite I'algorithme correspondant de recherche de décomposition
en paquets d’ondelettes invariants en décalage (DPOID) pour trouver la ‘meilleure base’. L’algorithme de recherche peut
etre représenté par un arbre binaire, dans lequel chaque noeud symbolise un sous-espace du signal original. Nous
prouvons que la ‘meilleure base’ résultante est orthonormale, et que l'expansion associée, charactérisée par le cout
informationnel le plus bas, est invariante en décalage. Cette invariance provient d'un degré de liberté supplémentaire,
geénéré au moment de la décomposition et incorporé dans l'algorithme de recherche. La dimension ajoutée est un
décalage relatif entre un noeud-parent donné et ses noeuds-enfants respectifs. Nous prouvons que pour tout sous-espace
il suffit de considérer I'une des deux décompositions alternatives, rendues possibles grice a la libraire POD. Ces
décompositions correspondent a un décalage de zéro et un décalage relatif de 277 ol # est le niveau de résolution. Les
décalages relatifs optimaux, qui minimisent le cofit informationnel, sont estimés en utilisant des sous-arbres de
profondeur finie. En ajustant leur profondeur, la complexité de calcul quadratique associée a la DPOID peut étre réduite,

au prix du coit informationnel final, 4 O(N log, N). © 1997 Elsevier Science B.V.
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1. Introduction

Wavelet packets (WP) were first introduced by
Coifman and Meyer [12] as a library of orthonor-
mal bases for L?(R). The proposed library, generated
via a generalized version of the multiresolution
decomposition [13,31], is cast into a binary tree
configuration, in which the nodes represent sub-
spaces with different time-frequency localization
characteristics [15]. The library encompasses as
special cases both octave band (wavelet} as well as
uniform filter-bank representations (Fig. 1) [45].

Implementation of a best basis selection proced-
ure for a prescribed signal (or a family of signals)
requires the introduction of an acceptable cost func-
tion which translates ‘best’ into a minimization
process. A decisive simplification takes place when-
ever the cost function is of an additive nature as is
the case when ‘entropy’ [15, 48] or rate-distortion
[38] criteria are used. The efficiency associated
with the minimization of additive cost functions are
intimately linked to the computationally efficient
determination of an optimal tree decomposition.
Specifically, at each resolution level. further de-
composition of a given parent node is carried out
based exclusively on a local cost function reduc-
tion. The orthonormality of the representation
together with the additivity of the cost function
render the decomposition of a prescribed node

independent of any other node at the same resolu-
tion level. The ‘best” decomposition tree is obtained
recursively on a complexity level O(N L) [15],
where N is the signal length at its highest resolution
level, and L denotes the number of decomposition
levels (L < log, N).

The cost function selection is closely related to
the specific nature of the application at hand. En-
tropy, for example, may be used to effectively
measure the energy concentration of the generated
nodes [16, 26, 47]. Statistical analysis of the best-
basis coefficients may provide a characteristic time-
frequency signature of the signal, potentially useful
in simplifying identification and classification
applications [6,28]. A major deficiency of this
approach is the lack of shift invariance. Both the
wavelet packet decomposition (WPD) and local
cosine decomposition (LCD) of Coifman and
Wickerhauser [15], as well as the extended algo-
rithms proposed by Herley et al. [23, 24], are sensi-
tive to the signal location with respect to the chosen
time origin.

Shift-invariant multiresolution representations
exist. However, some methods either entail high
oversampling rates (e.g., in [4,5,27.39,42], no
down sampling with the changing scale is allowed)
or immense computational complexity (e.g., the
matching pursuit algorithm [35,20]). In some
other methods, the resulting representations are
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Fig. 1. Three-level expansions trees: (a) the short-time Fourier
transform, (b) the wavelet transform, (c) typical expansion trees
of Wavelet Packet Decomposition (WPD), (d) typical expansion
trees of shift-invariant wavelet packet decomposition (SIWPD).

non-unique and involve approximate signal recon-
structions, as is the case for zero crossing or local
maxima methods [3, 25, 32-34]. Another approach
has given up obtaining shift invariance and settled
for a less restrictive property named shiftability
[1, 43], which is accomplished by imposing limiting
conditions on the scaling function [1, 2, 46].
Recently, several authors proposed independent-
ly to extend the library of bases, in which the best
representations are searched for, by introducing
additional degrees of freedom that adjust the time-
localization of the basis functions [8, 9, 11, 22, 29,
37]. It was proved that the proposed modifications
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Fig. 2. Test signal g(t).

of the wavelet transform and wavelet packet de-
composition lead to orthonormal best-basis repres-
entations which are shift invariant and are charac-
terized by lower information costs. The principal
idea is to adapt the down sampling when expand-
ing each parent node. That is, following the low-
pass and high-pass filtering, when expanding a par-
ent node, retain either all the odd samples or all the
even samples, according to the choice which min-
imizes the cost function.

In this work, which is summarized in [8], we
generate a shifted wavelet packet (SWP) library and
introduce a shift-invariant wavelet packet decompo-
sition (SIWPD) algorithm for a ‘best basis’ selection
with respect to an additive cost function (e.g., en-
tropy). We prove that the proposed algorithm leads
to a best-basis representation that is both shift
invariant and orthogonal. To demonstrate the
shift-invariant properties of SIWPD, compared
to WPD which lacks this feature, we refer to
the expansions of the signals g(t) (Fig. 2) and
g(t — 27°). These signals contain 27 = 128 samples.
For definiteness, we choose Dg to serve as the
scaling function (Dg corresponds to 8-tap
Daubechies minimum phase wavelet filters [17; 18,
p. 198]) and entropy as the cost function. Figs.
3 and 4 depict the ‘best-basis’ expansion under the
WPD and the SIWPD algorithms, respectively.
A comparison of Figs. 3(b) and (d) readily reveals
the sensitivity of WPD to temporal shifts while the
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Fig. 3. Effects of a temporal shift on the time-frequency representation using the WPD with 8-tap Daubechies minimum phase wavelet
filters: (a) the best expansion tree of g(t), (b} g(t) in its best basis; entropy = 2.84, (c) the best expansion tree of g(t — 27%),(d) g(t — 2™ %) in

its best basis; entropy = 2.59.

best-basis SIWPD representation is indeed shift
invariant and is characterized by a lower entropy
(Fig. 4). It is worthwhile mentioning that the tiling
grids in Figs. 3 and 4 do not in general correspond
to actual time—frequency energy distributions. In
fact, the energy distribution associated with each of
the nominal rectangles may spread well beyond

their designated areas [14]. However, when
a proper ‘scaling function’ is selected (i.e., well local-
ized in both time and frequency), the SIWPD based
time-frequency representation resembles shift-in-
variant time-frequency distributions. Fig. 5 displays
the Wigner and smoothed Wigner distributions [7]
for the signal g(t). The smoothing kernel (here we



I Cohen et al. | Signal Processing 57 (1997) 251-270

o—. | |

b i
g*' ] | ] |
SN
_4.|lll L] |
st Mo
0o o0z O;I;requen 3;‘6 0.8 1

(a)

* R -
101 1
3~3' M I rJ‘x I‘LI I rI'l 1
T ]
4 .
0 02 ogrequeng;s 08 1

(c)

-

o o

o N W @

e

ol

Frequency (normalized)

e o o o @

L .

-

[=]

0.8 1
Time

(b)

o o o 0 o o @

Frequency (nomalizecl)

Time

(d)

Fig. 4. Time—frequency representation using the SIWPD with 8-tap Daubechies minimum phase wavelet filters: (a) the best expansion
tree of g(t), (b) g(z) in its best basis; entropy = 1.92, (c) the best expansion tree of g(t — 27°),(d) g(t — 2™ ) in its best basis; entropy = 1.92.
Compared with the WPD (Fig. 3), beneficial properties are shift invariance and lower information cost.

chose a Gaussian) attenuates the interference terms
at the expense of reduced time-frequency resolu-
tion. Obviously, the smoothed distribution (Fig.
S(b)) has a closer relation to the STWPD hased
representation (Fig. 4(b)), than to the WPD based
representation (Fig. 3(b)).

Pursuing the SIWPD algorithm, shift invariance
1s achieved by the introduction of an additional
degree of freedom. The added dimension is a rela-

. o s
tive shift between a
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spective children nodes. Specifically, upon expand-
ing a prescribed node, with minimization of the
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Fig. 5. Contour plots of time-frequency distributions for the signal g(t): (a) Wigner distribution; (b) smoothed Wigner distribution.
Notice the close relation between the smoothed Wigner distribution and the SIWPD based time-frequency representation which is

depicted in Fig. 4(b).

information cost in mind, we test as to whether or
not the information cost indeed decreases. We
prove that for any given parent node it is sufficient
to examine and select one of two alternative de-
compositions, made feasible by the SWP library.
These decompositions correspond to a zero shift
and a 2~ shift where ¢ ( — L < ¢ < 0) denotes the
resolution level. The special case where, at any
resolution level, only low frequency nodes are fur-
ther expanded corresponds to a shift-invariant
wavelet transform (SIWT) [30, 36]. An alternative
view of SIWPD is facilitated via filter-bank termin-
ology [40, 44]. Accordingly, each parent node is
expanded by high-pass and low-pass filters, fol-
lowed by a 2: 1 down sampling. In executing WPD,
down sampling 1s achieved by ignoring all even-
indexed (or all odd-indexed) terms. In contrast,
when pursuing SIWPD, the down sampling is car-
ried out adaptively for the prescribed signal. We
stress that owing to the orthogonality of the repres-
entation and the presumed additive nature of the
cost function (e.g.,, entropy or rate distortion), the
decision at any given node is strictly local, i.c., inde-
pendent of other notes at the same resolution level.

The SIWPD expansion generates an ordinary
binary tree [15]. However, each generated branch
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Fig. 6. A ‘parent’ node binary expansion according to SIWPD:
(a) high- and low-pass filtering followed by a 2: { downsampling,
(b) high- and low-pass filtering followed by a one sample delay
(D) and subsequently by a 2:1 downsampling.

is now designated by either fine or heavy lines
(Fig. 6) depending on the adaptive selection of the
odd or the even terms, respectively. It can be readily
observed that in contrast to WPD, SIWPD expan-
sion leads to tree configurations that are indepen-
dent of the time origin. Fine and heavy lines
may, however, exchange positions (e.g., compare
Figs. 4(a) and (c)).
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The computational complexity of executing
a best-basis SIWPD expansion is O[24L —d +
2)N7], where N denotes the length of the signal (at
its highest resolution level), L + 1 is the number of
resolution levels (L <log, N) and d is the max-
imum depth of a subtree used at a given parent-
node to determine the shift mode of its children
(1 <d < L). In the extreme case d = 1, the com-
plexity, O(N L), is similar to that associated with
WPD, and the representation merges with that
proposed in [22]. As a rule, the larger d and L, the
larger the complexity, however, the detcrmined best
basis is of a higher quality; namely, characterized
by a lower information cost.

For d =L and for an identical number of
resolution levels, SIWPD leads necessarily to an
information cost that is lower than or equal to that
resulting from standard WPD. This observation
stems directly from the fact that WP library consti-
tutes a subset of the SWP library. In other words,
WPD may be viewed as a degenerate form of
SIWPD characterized by d = 0. In this case, the
relative shift of newly generated nodes is non-adap-
tively set to zero and generally leads to shift-variant
representations.

The best-basis expansion under SIWPD is also
characterized by the invariance of the information
cost. This feature is significant as it facilitates
a meaningful quantitative comparison between al-
ternative SWP libraries. Usually such a compari-
son between alternative libraries lacks meaning for
WP, as demonstrated by the example summarized
in Table 1.

Table 1

Entropies of g(t) (Fig. 2) and g(t — 2" °) represented on ‘best
bases’ obtained via WPD and SIWPD using libraries derived
from Dy and C, scaling functions

WPD SIWPD

b k] Cl’) DB Cb
glt) 2.84 2.75 1.92 235
glt — 279 259 2.69 1.92 235

Note: Dy corresponds to 8-tap Daubechies wavelet filters, and
C, corresponds to 6-tap coiflet filters.

Here, the entropies of the signals g(t) (Fig. 2) and
g(t —27°) are compared. The expansions are on
the best bases stemming from both the WPD and
SIWPD algorithms and for Dg and Cg scaling
functions (Cg corresponds to 6-tap coiflet filters
[18, p. 261; 19]). We can readily observe the shift-
invariance under SIWPD and the fact that the
selection of Dg is consistently advantageous
over Cg. Just as obvious 1s the futility of attempt-
ing a comparison between the Cg and Dy
based libraries under WPD. Cg is better for
g(t) while Dg is advantageous in representing
gt —27°).

This paper is structured as follows. In Section 2,
we introduce a shifted wavelet packet library as
a collection of orthonormal bases. Section 3 de-
scribes a best-basis selection algorithm. It is proved
that the resultant best basis decomposition and the
corresponding expansion tree are indeed shift in-
variant. A shift-invariant wavelet transform is
described in Section 4. The trade-off between com-
putational complexity and information cost is the
subject matter of Section 5, while Section 6 briefly
discusses the important extension to two-dimen-
sional signals.

2. The shifted wavelet packet library

Let {h,} denote a real-valued quadrature mirror
filter (QMF) obeying (e.g., [17, Theorem 3.6, p. 964]

Zhn—lkhﬂ—z.f = 5k.z= {1)

S hy = /2. (2)

Let {y,(x)} be a wavelet packet family (e.g.,
[13,49]) defined and generated via

Yan = /23 hhn(2x — k), (3)
k
Vane 1 () = /23 githn(2x — k), @)

where g, =( — 1)*h; -, and Yo(x) = @(x) is an
orthonormal scaling function, satisfying

(px —p), olx—q)> =0,, pqgeLl (3)
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Furthermore, let f(x) be a function specified at the
Jjth resolution level, i.e., fe V;, where

V; = clos g {22 o(2x — k) ke Z}. (6)

It may be observed that the expansion of f(x) on the
standard basis {2/2yo(2/x — k): k € Z} remains in-
variant under 27/ m shifts (me Z). However, as
f(x) e V; is decomposed into orthonormal wavelet
packets using the best-basis algorithm of Coifman
and Wickerhauser [15], the often crucial property
of shift invariance is no longer valid. One way to
achieve shift invariance is to adjust the time local-
ization of the basis functions [8, 30, 37]. That is,
when an analyzed signal is translated in time by T,
a new best basis is selected whose elements are also
translated by t compared to the former best basis.
Consequently, the expansion coefficients, that are
now associated with translated basis functions, stay
unchanged and the time—frequency representation
is shifted in time by the same period. The ordinary
construction of a wavelet packet (WP) library pre-
cludes the above procedure, since translated ver-
stons of library bases are not necessarily included in
the library. The proposed strategy in obtaining shift
invariance i1s based on extending the library to
include all their shifted versions, organizing it in
a tree structure and providing an efficient ‘best
basis’ search algorithm.

To further pursue the stated objective we intro-
duce the notation [8, 37]

Bl = {202y [2(x —m)— k] keZ). (7)

fonym
Uﬁ.mm = C]OSLzl“] {B‘;nm} (8)

and define shifted-wavelet-packet (SWP) library as
a collection of all the orthonormal bases for
V; which are subsets of

(B, ilel_,neZ,, 0<m<2""}. 9)

This library is larger than the WP library by
a square power, but it can still be cast into a tree
configuration facilitating fast search algorithms.
The tree structure is depicted in Fig. 7(a). Each
node in the tree is indexed by the triplet (£, n, m)
and represents the subspace UJ, . Likewise the
ordinary binary trees [15], the nodes are identified
with dyadic intervals of the form I,,=[2n,
2/(n + 1)). The additional parameter m provides

Jnom

degree of freedom to adjust the time-localization of
the basis functions. The following proposition gives
simple graphic conditions on subsets forming or-
thonormal bases.

Proposition 1 [8]. Let E = {(/,n,m)} c Z_ xZ, x

Z,,0<m<2"7, denote a collection of indices sat-

isfying

(i) The segments I, ,=[2'n,2'(n + 1)) are a dis-
joint cover of [0,1).

(1) The shift indices of a pair of nodes ({1, ny, my),
(£3, 15, my) € E are related by

m;mod 2-"*"=m, mod 2-7+1, (10)

where 7 is the level index of a dyadic interval
I ; that contains both I, , and I, . .
Then E generates an orthonormal (ON) basis for
Vi=Ul oo ie, {B,, .. ((,,n,m)eE} is an ON

basis, and the set of all E as specified above generates
an SW P library.

Condition (ii) is equivalent to demanding that
the relative shift between a prescribed parent node
(¢/,n,m) and all its children nodes is necessarily
a constant whose value is restricted to either zero or
to 27’. In the dyadic one-dimensional case, each
parent node (7, n,m) generates children nodes
(¢ —1,2n,m') and (£ — 1,2n + 1, m") where, ac-
cording to condition (ii), their shift indices may take
the valuem' =m" =morm' =m" =m+ 27 (the
generated branches are respectively depicted by
thin or heavy lines; cf. Fig. 6).

The expansion tree associated with a given signal
describes the signal’s representation on an or-
thonormal basis selected from the SWP library.
The index set E is interpreted as the collection of all
terminal nodes. That is, all nodes beyond which no
further expansion is to be carried out. A specific
example of an expansion tree 1s shown in Fig. 7(b).
The proposed configuration ensures that the set of
terminal nodes satisfies the conditions of Proposi-
tion 1. In particular, refer to the terminal nodes
(—3,0,6) and ( — 4, 5,10). These nodes are de-
scendants of ( — 1, 0, 0). Hence, their related dyadic
intervals I_3 o, =1[0,1/8) and I_4 s =[5/16,3/8)
are contained in the dyadic interval I_, ;=
[0, 1/2), and their shift indices are indeed related by

6mod?2? = 10mod 2% = 2.
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Fig. 7. (a) The extended set of wavelet packets organized in a binary tree structure. Each node in the tree is indexed by the triplet(#, n, m)

and represents the subspace UJ

fonm®

(b) Exemplifying an SIWPD binary tree. The children nodes corresponding to (£, n, m) are

(¢ —1,2n,m)and (¢ — 1, 2n + 1, i), where fit = m (depicted by thin lines) or # = m + 2~ (depicted by heavy lines). (c) Rearrangement

of the nodes in a sequence order.

The nodes of each level in this example have
a natural or Paley order. It is normally useful to
rearrange them in a sequency order [49], so that the
nominal frequency of the associated wavelet
packets increases as we move from left to right
along a level of the tree. The rule to get a sequency
ordered tree is to exchange the two children nodes
of each parent node with odd sequency (inverse
Gray code permutation [49, p. 250]). The resultant
tree is depicted in Fig. 7(c).

3. The best basis selection

Alike the wavelet packet library [15], the tree
configuration of the extended library facilitates an
efficient best basis selection process. However, in
contrast to the WPD, the best basis representation
is now shift invariant.

Let feV;=U} . let # denote an addi-
tive cost function and let # represent an SWP
library.
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Definition 1 [15]. The best basis for f in # with
respect to .# is B € % for which .4 (Bf) is minimal.
Here, .# (Bf'} is the information cost of representing
fin the basis B € 4.

Let A}, denote the best basis for the subspace
UJ, .. Accordingly, 4} ,, constitutes the best
basis for fe V; with respect to .#. Henceforth, for
notational simplicity, we omit the fixed index j. The
desired best basis can be determined recursively by
setting

B, m
Asnm =

if MByymf) < MA 1 20])
+ M(Ar 1200 1m S )
A Lonm @ Ar Z 1204 1me s else,

(11

where the shift indices of the respective children
nodes are given by

1
m, lf z f{{ (A.f - 1,2n +r.mf)
me = =0 1 (12)
< Eﬂ(A/—I‘2n+:.m+2 ’f},
i=0

m+2"° else.

The recursive sequence proceeds down to a speci-
fied level # = — L (L < log, N), where

A—L.n.m: B—L.n.m' (13)

The stated procedure resembles that proposed by
Coifman and Wickerhauser [15] with an added
degree of freedom facilitating a relative shift (ie,
m, # m) between a parent node and its respective
children nodes. It is re-emphasized that the recur-
sion considered herein restricts the shift to one of
two values (m; —me {0,2‘}). Other values are
unacceptable if the orthonormality of the best basis
is to be preserved. As it turns out, the generated
degree of freedom is crucial in establishing time
invariance. The recursive sequence proposed in
[15] may be viewed as a special case where m, — m
is arbitrarily set to zero.

Lemma 1. Let E, and E, denote index collections
obeying Proposition 1, and let B, and B, be the
corresponding orthonormal bases. Then B, and B,

are ‘identical to within a time-shift’ if and only if there
exists a constant g € Z such that for all (£, n,m) € E,,
we have (£, n, m) € E, where i = (m + ¢)mod2~".

Proof. Bases in V; are said to be identical to within
a time shift if and only if there exists g € Z such that
for each element in B, we have an identical element
in B, that is time shifted by ¢q27/. Namely, if

20 +02 [2°(2x — m) — k] € By,

then

20002 [2(2(x — q27%) —m) — k] € B,,

If E denotes index collection obeying Proposition
1 and B is its corresponding basis, then (¢, n,m) € E

is equivalent to B, < B. Therefore, by observing
that

¥al2/(2(x — q277) —m) — k]
= Ya[2/(2x — i) — k1,

where #i=(m+¢gmod2~‘ and k=k+

[ 2/(m + q) |, the proof is concluded. [J.

Definition 2. Binary trees are said to be ‘identical to
within a time shift’ if they correspond to bases that
are ‘identical to within a time shift’.

Figs. 4(a) and (c) depict identical to within a time
shift trees representing the identical to within time-
shift signals.

Proposition 2. The best basis expansion stemming
from the previously described recursive algorithm is
shift invariant.

Proof. Let f, g€ V; be identical to within a time
shift, i.e., there exists geZ such that g(x)=
f(x — q277). Let A, and A, denote the best bases for
fand g, respectively. It can be shown (Appendix A)
that

B(_"‘m Lo Af
implies
B{.n.:ﬁ < Ags ’ﬁ = (m + Q)mOd(ZJ(}$

forallm,neZ, and £ € Z_. Hence, Ay and A, are
identical to within a time shift. [
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The number of orthonormal bases contained in
the shifted WP library can be computed recursive-
ly. Let S, denote the number of bases associated
with an (L + 1)-level tree expansion (i.e., the expan-
sion is to be executed down to the / = — L level).
The tree comprises a root and two L-level subtrees.
Since two options exist for selecting the relative
shift, we have

S, =1+282_ |, So=1. (14)

Consequently, it can be shown by induction that
for L > 2

0.5(2.48Y < S, < 0.5(2.49)*". (15)

A length N signal may be represented by S, differ-
ent orthonormal bases (L < log, N), from which
the best basis is selected. While the associated com-
plexity level is of O(N2“*!), we demonstrate in
Section 5 that the algorithmic complexity may be
reduced substantially (down to a level of O(NL))
while still retaining shift invariance. The reduced
complexity, however, may lead to representations
characterized by a higher cost function values.
For the sake of comparison with the established
WPD algorithm [15], let s;, denote the number of
bases associated with an (L + 1)-level tree. Then

s,=14+st.,, so=1, (16)
and consequently, for L > 2
(1.507" < s, < (1.51)%. (17)

The WPD algorithm has an attractive complexity
level of O(NL). However, the best basis representa-
tion is not shift invariant. It is worthwhile stressing
that despite the fact that S; > sf for L > 2, the
complexity level characterizing SIWPD is signifi-
cantly below the squared WPD complexity. Specifi-
cally, O(N2-* 1)« O(N?L?).

4. The shift-invariant wavelet transforms

The property of shift invariance can also be
achieved within the framework of the wavelet
transform (WT) and a prescribed information cost
function (.#) [30, 36]. It may be viewed as a special
case whereby the tree configuration is constrained

to expanding exclusively the low-frequency nodes.
The signal is expanded by introducing a scaling
function (o) or a ‘mother wavelet’ (,). To achieve
shift invariance, we again permit the introduction
of a relative shift between children nodes and their
parent node. The shift selection is, once again,
based on minimizing the cost function (.#) at hand.
This procedure yields the wavelet best basis for
a signal f e V; with respect to (.#), among all the
orthonormal bases generated by

(B, il€Z .ne(1),0<m<2""}

Let W,,, denote the wavelet best basis for Ui, .
The wavelet best basis for fe V;= Uy , , may be
determined recursively via

Wr"m = W(— I.mv@Bg ~L1m? (18)
where
m, if MW,_\nf)+ #(B)_,,,.f)
o <MW, niz-of)
¢ + MB | ,a-af) (19

m+ 277 else.

The expansion is performed down to the level
{ = — L (L < log, N), namely

W orm=B\ o (20)

An N-element signal may be represented by 2°
different orthonormal wavelet bases. The asso-
ciated complexity level is O(N L) and the resultant
expansion is indeed shift invariant.

As an example, we now refer to the signal g(t),
depicted in Fig. 2, and its translation g(t — 2~ °).
The corresponding wavelet transforms, with Cg as
the scaling function [18, p. 261; 19], are described in
Fig. 8. The variations in the energy spreads of g(t)
and g(t — 2~ °), stemming directly from the lack of
shift invariance, are self-evident. Moreover, the
transformed cost function (entropy) is shift depen-
dent as well. In complete contrast, the wavelet best
basis decompositions depicted in Fig. 9 yield identi-
cal (to within a time shift) energy distributions. The
corresponding entropy is lower and independent of
the time shift.
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Fig. 8. Time-frequency representation in the wavelet basis using 6-tap coiflet filters: (a) the signal g(r); entropy = 3.22; (b) the signal
glt — 27 %) entropy = 3.34.
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Fig. 9. Time-frequency representation in the wavelet best basis using 6-tap coiflet filters: (a} the signal g(t); entropy = 3.02; (b} the signal
gt — 27 °); entropy = 3.02.

5. The information-cost complexity trade-off O(N2E*1Y), associated with SIWPD is substantially
higher. In return, one may achieve a potentially

So far we have observed that WPD lacks shift large reduction of the information cost, in addition
invariance but is characterized by an attractive to gaining the all important shift invariance. How-
complexity level O(N L), where L denotes the ever, whenever the SIWPD complexity is viewed
lowest resolution level in the expansion tree. as intolerable, one may resort to a suboptimal

Comparatively, the quadratic complexity level, SIWPD procedure entailing a reduced complexity,
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and higher information cost while still retaining the
desirable shift invariance.

The best basis for f € V; with respect to . is,
once again, obtained recursively via (11), but con-
trary to the procedure of Section 3, now the selec-
tion of a relative shift at a given parent node does
not necessitate tree expansion down to the lowest
level. While an optimal decision on the value of
a shift index is provided by (12), a suboptimal shift
index may be determined by

1
m if Z MCy 1 on v iimaf)
=0 1)

1
< Z "{((Cr—-l.zn+i.m+2"f.df)a
i=0

m+ 2, else,

where C, , . , denotes the best basis for U, ,, sub-
ject to constraining the decomposition to
d (1 <d < L) resolution levels. Accordingly, the
shift indices are estimated using subtrees of d, res-
olution levels depth (d, < d), where

d, d-L</<0,
d = {L +7, else. 22)

0.9+ I

A | R

@
No7y
(]
Eosl

c 0.4}

S S 11

o0.3f

0.1} ' — 1 1

of

For d =1 or at the coarsest resolution level
{=— LwehaveC,, ,,=B,,,.Forf> — Land
d>1 C,,,.q1s obtained recursively according to

Cf.rr.m.d' =

B{,n.ms
C/—l,Zn,m‘d -1 @C/—I.2n+l.m,d—ls (23)

C/—1,2r|,m+2_{,d—l @ Cr‘—l.2n+ Lm+2=7d~1s

where C, ,, . s takes on that value which minimizes
the cost function .#.

The shift invariance is retained forall 1 <d < L.
The cases d = L and d < L should be viewed as
optimal and suboptimal with respect to the pre-
scribed information cost function (.#). The best-
basis search algorithm of Coifman and Wicker-
hauser [15] corresponds to the special case m, = m
for all nodes (d = 0). Quite expectedly, the non-
adaptive selection yields representations that are
not, in general, shift invariant, Fig. 10 depicts the
time-frequency representations of the signals
g(t) and g(t —27%, using the suboptimal
SIWPD(d = 1) with 8-tap Daubechies minimum
phase wavelet filters. The resultant entropy is higher

0 0.2 0.4 0.6 0.8 1
Time

(b)

Fig. 10. Time-frequency representation using the suboptimal (d = 1) SIWPD with 8-tap Daubechies minimum phase wavelet filters: (a)
the signal g(t); entropy = 2.32; (b) the signal g(t — 2™ °®); entropy = 2.32.
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than is obtained using the optimal SIWPD (Fig. 4).
Yet, the valuable property of shift invariance is
provided with a significant reduction in the com-
putational complexity.

Since, at each level /, the subtrees employed in
estimating the shift indices are restricted to d,
level depth (d, <d), the complexity is now
O[N2YL — d + 2)]. In the extreme case, d = 1, the
complexity, O(2N L), resembles that associated
with WPD, and the representation merges with
that proposed in [22]. As a rule, the larger d and L,
the larger the complexity, however, the determined
best basis is of a higher quality; namely, character-
ized by a lower information cost.

5.1. Example

To demonstrate the trade-off between informa-

Processing 57 (1997) 251-270

These figures depict the expansion trees of the sig-
nal g(t), either when the relative shifts are arbitrarily
set to zero (the WPD algorithm), estimated using
one-level-depth subtrees (suboptimal SIWPD with
d = 1), or estimated using two-levels-depth subtrees
(suboptimal SIWPD with d = 2). The numbers as-
sociated with the nodes of the tree represent the
entropies of ¢ in the corresponding subspaces. For
the best expansion trees, the numbers represent the
minimum entropies obtained by the best-basis al-
gorithms.

The initial entropy of the signal g is 3.58. The
children nodes of the root node have lower entropy
when we introduce a relative shift (regarding Figs.
11(a) and 12(a). 1.85 + 1.41 < 1.84 + 1.48). Hence
the root-node decomposition in Fig. 12(a) is carried
out with ‘heavy lines’. Now, consider the expansion
of the node specified by (£, n,m) =( —1,0, 1) (the

tion cost and complexity we refer to Figs. 11-13. left node at the level # = — 1). If the relative shift is
oh b.ss ]
4k 1.84 .48 )
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Fig. 11. Wavelet packet library trees of the signal g(t): (a) five-

corresponding subspaces; (b) the best expansion tree; the nu
algorithm.

level expansion tree; the numbers represent the entropies of g in the
mbers represent the minimum entropies obtained by the best-basis
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Fig. 12. Shifted wavelet packet library trees of the signal g(1): (a) five-level expansion tree, where the relative shifts are estimated using
one-level-depth subtrees (d = 1), the numbers represent the entropies of g in the corresponding subspaces; (b) the best expansion tree, the
numbers represent the minimum entropies obtained by the suboptimal (d = 1) best-basis algorithm.

based on a one-level-depth subtree, then no relative
shift is required (regarding Figs 12(a) and 13(a):
1.02 + 0.63 < 1.09 + 0.70). However, a deeper sub-
tree reveals that a relative shift is actually more
desirable, and a lower entropy for the node
(—1,0,1) is attainable (regarding Figs 12(b) and
13(b): 1.23 < 1.49). The eventual entropy of the
signal g is 2.84 when implementing the WPD
algorithm, 2.32 when using the suboptimal
SIWPD(d = 1), and 1.92 when using the subopti-
mal SIWPD(d = 2). The number of real multiplica-
tions required by these algorithms are respectively
rNL = 5120, 2rNL =10240 or rN@4L —2)=
18432, where the length of the signal is N = 128,
the number of decomposition levels is L = 5, and
the filters’ length is r=28. In this particular
example, larger d values do not yield a further
reduction in the information cost, since d = 2 has

already reached the optimal SIWPD (compare
Figs. 13(b) and 4(a)).

5.2. Experiment

Normally, as was the case for the above example,
the information cost decreases when the shift indi-
ces are evaluated based on deeper subtrees (larger
d). Notwithstanding an assured reduction in in-
formation cost using the optimal SIWPD, subopti-
mal SIWPD may anomalously induce an increase.
We have performed an experiment on 50 acoustic
transients, generated by explosive charges at vari-
ous distances (these signals are detected by an array
of receivers and used to evaluate the location of
explosive devices). Fig. 14 shows a typical acoustic
pressure waveform containing 64 samples. We
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Fig. 13. Shifted wavelet packet library trees of the signal g(t): (a) five-level expansion tree, where the relative shifts are estimated using
two-levels-depth subtrees (d = 2), the numbers represent the entropies of g in the corresponding subspaces; (b) the best expansion tree,
the numbers represent the minimum entropies obtained by the suboptimal (d = 2) best-basis algorithm.

applied the WPD algorithm, the suboptimal
SIWPD with d =1 or d =2, and the optimal
SIWPD to the compression of this data set. The
decomposition was carried out to maximum level
L =5 using 8-tap Daubechies minimum phase
wavelet filters. The number of real multiplications
required by these algorithms for expanding a given
waveform in its best basis are respectively 2560,
5120, 9216 and 31744.

Table 2 lists the attained entropies by the
best-basis algorithms for an arbitrary subset of
ten waveforms. Clearly, the average entropy is
lower when using the SIWPD. It decreases when
d is larger, and a minimum value is reached using
the optimal SIWPD(d = L). Moreover, the
variations in the information cost, which indicate
performance robustness across the data set, are
also lower when using the SIWPD. Notice the

irregularity pertaining to the eighth wave-
form. While its minimum entropy is expectedly
obtained by implementing the optimal SIWPD, the
suboptimal SIWPD with d =1 fails to reduce
the entropy in comparison with the conventional
WPD.

To illustrate the improvement in information
cost of the SIWPD with various d values over the
conventional WPD, we plot in Fig. 15 the reduc-
tion in entropy relative to the entropy obtained
using the WPD. We can see that for some signals
the entropy is reduced by more than 30%. The
average reduction is 10.8% by the suboptimal
SIWPD(d = 1), 164% by the suboptimal
SIWPD(d = 2), and 18.1% by the optimal SIWPD.
Thus the average performance of SIWPD is in-
creasingly improved as we deepen the subtrees used
in estimating the shift indices.
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Fig. 14. Typical acoustic pressure waveform in free air from
explosive charges.

Table 2

Entropies attained by the conventional WPD, suboptimal
SIWPD (d < L) and optimal SIWPD (d = L) for acoustic pres-
sure waveforms

SIWPD
WPD
Waveform # L=35 d=1 d=2 d=L=35
1 1.829 1.706 1.659 1.494
2 2463 1.997 1.997 1.997
3 2.725 2.347 2.256 2.045
4 2.501 2.086 2078 2.078
5 1.656 1.606 1.606 1.593
6 2.398 2339 2.251 2212
7 2.461 2.281 2.020 2.020
8 2277 2,280 2.151 2141
9 1.720 1.572 1.449 1.419
10 2.154 1.626 1.623 1.623
Mean 2.218 1.984 1.909 1.862
Variance 0.367 0.327 0.297 0.295

Note: The average entropy and the variance are lower when
using the SIWPD, and they further decrease when d is larger.

6. Extension to 2D wavelet packets

Referring to Section 3, the best-basis representa-
tion of a signal is rendered shift invariant by allow-
ing a relative shift between a parent node and its
respective children nodes in the expansion tree. The
procedure remains essentially the same and leads

35,
30
25

-
n o

wm

Reduction in entropy
>

=]

1% 10 20 30 40 50
Waveform number

Fig. 15. Percentage of reduction in entropy over the conven-
tional WPD using the optimal SIWPD (heavy solid line), the
suboptimal SIWPD with d = 2 (fine solid line) and the subopti-
mal SIWPD with d = 1 (dotted line).

to analogous results when applied to 2D signals
[21,29]. In this case, a shift with respect to the
origin is a vector quantity m = (my, m,). If we desire
to generate a best-basis decomposition that re-
mains invariant under shifts in the X-Y plane, we
must permit a, now two-dimensional, parent—chil-
dren relative shift, to be determined adaptively. Let
my, and m, denote the parent and children shift with
respect to the origin (x = y = 0). The relative shift
(m. — m,) may take on any one of four values

me —my = {(0,0),(27,0),(0,27", 27,27}

The value to be adapted is, once more, the one that
minimizes the information cost. The proof follows
along the lines charted in the one-dimensional case.

It should be stressed, however, that while the 2D
expansion thus attained is shift invariant in x and y,
it is not invariant under rotation.

7. Concluding remarks

A library of orthonormal shifted wavelet packets
is defined and a search algorithm leading to a shift
invariant wavelet packet decomposition (SIWPD) in-
troduced. When compared with the WPD algorithm
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proposed in [15], SIWPD is determined to be ad-
vantageous in three respects. First, it leads to a best
basis expansion that is shift invariant. Second, the
resulting representation is characterized by a lower
information cost. Third, the complexity is control-
led at the expense of the information cost.

The stated advantages, namely the shift invari-
ance as well as the lower information cost. may
prove crucial to signal compression, identification
or classification applications. Furthermore, the
shift-invariant nature of the information cost, ren-
ders this quantity a characteristic of the signal for
a prescribed wavelet packet library, It should be
possible now to quantily the relative efficiency of
various libraries (i.e., various scaling function selec-
tions) with respect to a given cost function. Such
a measure would be rather senseless [or shift-vari-
ant decompositions.

The complexity associated with the SIWPD al-
gorithm is O(2“N(L — d + 2)), (recall, N denotes
the length of the signal, L is the number of tree
decomposition levels and d limits through (22) the
depth of the subtrees used to estimate the optimal
children nodes). One may exercise a substantial
control over the complexity. The key to controlling
the complexity is the built-in flexibility in the choice
of d. Lower d implies lower complexity at the ex-
pense of a higher information cost. At its lower
bound, d = 1, the attained level of complexity,
O(N L), resembiles that of WPD while still guaran-
teeing shift invariance.

The presented procedure is based on the general
approach: extend the library of bases to include all
their shifted versions, organize it in a tree structure
and provide an efficient ‘best basis’ search algo-
rithm. It is of course not limited to wavelet packets
and shift invariance. Other types of bases can be
used, and various extended libraries are available
[9-11].

Appendix A. Proof of Proposition 2

Let f, g € V; be identical to within a time shift,
and let 4, and A, denote their respective best bases.
Hence there exists g € Z such that

g(x) =f(x —q27). (A.1)

We show by induction that

Bf.n.m = A_,l" {A.Z}
implies
B, i< Ay, mi=(m+g)mod(27), (A3)

forallmneZ, and FfeZ_.
First we validate the claim for the coarsest res-
olution level # = — L. Suppose that

B. Lomg & Af1 0 <n< 21‘. (A‘LI.}

That is, m = m, minimizes the information cost for
representing f in the subspace U_, , . i.€.,

Arg min [ .#(B_ ., .f)} = my. (A.5)

O=m<2t
It stems from (A.1) that
g1y [2°(2x —m) — k1)
= {f(x)¥a[2'(2)x — m + q) — k],
LnjkmelZ, (A.6)
and accordingly

"ﬁ'{Bf.n.mg} = "[z(B/,n.m - qf)' (A'?)

Hence the information cost for representing g in the
subspace U _; , ,, is minimized for m = mqy + ¢, i.e.,

Arg min [ #(B_;,.9)} = (my + g)mod(2“)

O=m=2t

(A.8)
and
B_ i, © Ay Mo =(mg + gymod (21')- (A.9)

Now, suppose that the claim is true for all levels
coarser than /4(/, > — L), and assume that (A.2)
exists for / = /. Then by (11)
‘W[B/mu,mf) % "ﬁ(A/‘,— |‘3n,m\f)

+ (A~ 120+ I‘muf)’

mee {mm+ 2"} (A.10)

The inductive hypothesis together with Eq. (A.7)
leads to

ANA 13 ;_muf} =M(As, 120+ e + qg)5

e {0,1}. (A.11)
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Consequently,
M{B/n.n.m . qg)
‘-<~.. V{{{Afa — 1.2nm, + 99} + "g{(A(g—' L.2n+ 1,m_+ qg)’

mee {imm+ 2"}, (A.12)
and again by (11) we have
B, wi= A, m=(m+q)mod(2-") (A.13)

proving as well the validity of the claim for 7.
Thus, A, and A, are identical to within a time shift.
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