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ABSTRACT

In this work we study morphological methods to re-
duce the amount of redundant points in the Skeleton
representation of images. The advantage of removing
redundant points using morphological operations only,
lies in the computational efficiency of these operations,
when implemented on parallel machines.

We present a generic approach to obtain redundancy-
reduced Skeletons, which yields morphological closed
formulae to obtain a Skeleton with less redundant points
than the regular one. Although not yet able to com-
pletely remove the redundancy in the general case, the
generic approach s shown to provide a redundancy-free
representation, for a particular important case.

We also derive, from the generic approach, a mor-
phological formula to obtain the Fssential Points of the
Skeleton, which are points that cannot be removed from
the Skeleton without affecting the error-free character-
1stec of the representation.

[. INTRODUCTION

The Morphological Skeleton is a compact error-free
representation of images, a property useful for lossless
image data compression.

However, some authors have noted the fact that the
Skeleton is a redundant representation, i.e., some of its
points may be discarded without affecting its error-free
characteristic. In some applications, such as coding, no
importance is attributed to the Skeleton shape or its
connectivity, but only to its ability to fully represent

mmages in a compact way. In such applications, it is of
interest to remove redundant Skeleton points, so that
the representation contains as few as possible points.

For this purpose, Maragos and Schafer defined in [1]
a Minimal Skeleton as being any set of points from the
Skeleton which fully represents the original image and
does not so if any of its points is removed. A Mini-
mal Skeleton always exists since in the worst case it
is the Skeleton itself. On the other hand, there can
be more than one Minimal Skeleton for a given image.
Fig. 1(a) shows a binary picture and its Morphologi-
cal Skeleton computed with a 3x3 square structuring-
element. Fig. 1(b)-(c) show two of the Minimal Skele-
tons of Fig. 1(a).

(a) (b) () (d)

Fig. 1: (a) A shape and its Skeleton (computed with a
3x3 square), (b)-(c) two of its Minimal Skeletons, (d) the
Essential Points.

Maragos and Schafer propose in [1] an algorithm for
finding a Minimal Skeleton from the Skeleton represen-
tation of a binary image. However, this algorithm is
not fully morphological and therefore cannot be effi-
ciently implemented on a parallel machine, in contrast
to the Morphological Skeleton itself which is amenable
to a parallel implementation. A fully morphological
algorithm for finding Minimal Skeletons could take ad-
vantage of the parallel properties of the morphological
operations and perform the computation in a more ef-
ficient way.

Sapiro and Malah defined in [2, 3] an Essential Point
of the Skeleton as any Skeleton point that cannot be
removed from the original Skeleton without affecting
its error-free property. The Essential Points are con-
tained in any Minimal Skeleton, although usually are
not sufficient for exact reconstruction. The set of Es-
sential Points is unique and it is typically the major
part of Minimal Skeletons (90% and more) [2]. Be-
cause of the above properties, Sapiro and Malah sug-
gested in [2] that the Essential Points of the Skeleton
should be found first, and then the remaining Minimal
Skeleton points could be searched for in a more efficient
way. The Essential Points of the shape in Fig. 1(a) are
shown in Fig. 1(d). Notice that they are present in the
two Minimal Skeletons shown in the figure.

Another important related topic is the “Reduced
Skeleton” defined by Maragos in [4]. The Reduced

Skeleton has fewer representation points than the regu-



lar Skeleton and it is also error-free. It is not a Minimal
Skeleton but it is obtained by morphological operations
only. (The mathematical definition is reviewed in sec-
tion IT below).

In this work, we propose a generic morphological ap-
proach to obtain “general” Reduced Error-Free Mor-
phological Skeletons, which gives Marago’s Reduced
Skeleton as a particular case. The approach also leads
to a Reduced Skeleton which has less points than
Maragos’ Reduced Skeleton and is also error-free. We
also extend the approach to Multi-Structuring-Element
Skeletons (MSES) as well (the MSES was introduced
in [5]) and show that for a particular case of MSES
the approach leads to a redundancy-free representation
(Minimal MSES).

We also present an algorithm (based on the same
generic approach) to extract the set of Essential Points
of a Skeleton and discuss a fast alternative to obtain a
good approximations of it.

II. REDUCED SKELETONS

The concepts discussed in this paper are suitable for
both binary images and grayscale images, but we con-
sider here only the binary case. The images may be
continuous sets (sets in R?) or discrete sets (sets in

Z2).
A. Types of Redundant Points

Let us consider a collection of subsets {7} which
represents a given binary image X in the following way:

X=|Jr.enB. (1)

n

where @ stands for morphological dilation, and B is
a pre-defined structuring-element. The parameter n»
may assume all the non-negative continuous values (if
X and B are continuous sets) or it may assume only
discrete values n = 0,1,... (for X and B which are
both continuous or both discrete).

A point t belonging to the subset of order n repre-
sents an element n B translated to t:

{t} ®nB =nbB; (2)

where B, £ {t+b| b€ B).

If t € T}, is redundant, then the element it represents
(nB¢) is contained in a region represented by all the
other representation points, i.e.,

nB.C | | TmomB | Ul(T,—{t)@nB] (3)

m#n

Each redundant point can be classified into one or more
of the following redundancy categories:

Single-Element Redundancy: if there exists at
least oneelement biggerthan n B that covers n B,
le.:

dm >n, 3z | nB: C mB. (4)

Future-level Redundancy: if there exists a union of
elements bigger than nB that covers nB;, i.e.:

nB. C | J TmomB (5)

m>n

Note that every “Single-Flement” redundant

point is also a “Future-level” redundant point.

Past-level Redundancy: if there exists a union of
elements smaller than n B that covers nB;, i.e.:

nB. C | J TnemB (6)

m<n

Interlevel Redundancy: if there exists a union of el-
ements with size different from n that covers n By,
le.:

nB, C | J TnemB (7)
m#n
Hence, every future-level or past-level redundant
point is also an interlevel redundant point.

Intralevel Redundancy: if the point is not Inter-
level redundant, i.e. if every set of elements that
covers nB; (but is not containing nB;) contains
at least one element of size n.

B. The Morphological Skeleton and Its Redundancy

The Morphological Skeleton representation of a bi-
nary image X, with a given binary structuring-element
B, is a collection of sets {S,}, which satisfies (1) for
Tn = Sp,¥n. The set Sy, is called Skeleton subsets of

order n and is given by:

S, =X6nB—-(X6nB)o(An)B (8)
where An = dn (an infinitesimally small number) if
n is continuous, or An = 1 if n assume only natural

values. The symbols &, o and e denote, respectively,
binary erosion, opening and closing. The minus sign
denotes here set-difference.

It is well known that the Skeleton, being the set of
points which are centers of maximal elements, does not
contain redundant points from the “Single-Element”
category, i.e., it does not contain “Single-Element Re-
dundancy”. On the other hand, it may contain redun-
dant points from all the other categories.

For demonstration, Fig. 2 shows a continuous binary
image composed by the union of 2 disks, P and @,
which are centered at the points p and g, respectively.
The Skeleton of the shape, computed with a continuous
disk as structuring-element, for continuous values of n,
is the segment [p,gq]. In this case, all the points are
redundant, except p and ¢g. The point a in Fig. 2(a) is
a “Future-level” redundant point, because the element
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Fig. 2: Types of redundant points in the Skeleton. (a)
A binary image composed by two disks (P and Q), and its
Skeleton (the segment [p, g]). The point a is a “Future-level”
redundant point, (b) the point b is a “Interlevel” redundant
point, and (c) the point c is a “Intralevel” redundant point.

it represents (the dotted disk) is contained in the union
of 2 bigger disks (P and @). The point b in Fig. 2(b)
is “Interlevel” redundant, because it represents a disk
(the dotted one) contained in the union of a bigger disk
(Q) and a smaller disk (P). The point ¢ in Fig. 2(c) is
“Intralevel” redundant, because the dotted disk, which
it represents, is contained in the union of a larger disk
(Q) and a disk with the same size (P), and it is not
contained in any union of only larger and smaller disks.

C. The Proposed Generic Approach to Obtain Re-
duced Skeletons

In [1] and [2], the approach used to remove redun-
dant points from the Skeleton was first to calculate the
Skeleton and then to apply a reduction algorithm to
remove the redundant points.

However, we note that the skeletonization itself is a
partial reduction process, and we demonstrate this with
the following considerations. If the Skeleton subsets S,
would have been defined as S, = X ©nB, Vn, then the
exact reconstruction property (1) for 7, = S, would
still be satisfied, but this “Skeleton” would contain too
many points. In fact, So itself would then be equal
to X. Instead, the sets [X © nB]o (An)B of redun-
dant points are removed from X © nB for all » in the
definition of the Skeleton (8), so that a compact rep-
resentation is obtained. However, as mentioned before,
only the “Single-Element Redundancy” is removed this
way.

We propose to remove as many redundant points
as possible during the skeletonization process, which is
fully morphological, so that a more efficient error-free
decomposition than the regular Skeleton is obtained by
morphological operations only.

The following relation illustrates the approach:

representation rec.lundant .
RS, = . points  of (9)
points of order n
order n

where {RS,} are the Reduced Skeleton subsets.

When the representation points are the centers of
elements nB, the above relation can be written as fol-

lows:
representa- redundant
RSy, = [ tion region | ©nB — | region of | ©nB
of order n order n

(10)

Usually, the “representation region of order n” is
X onB. By replacing the field “redundant region of
order n” in (10) by appropriate sets, one can obtain
different Reduced Skeletons.

It can be shown that if we choose X o (n 4+ An)B to
be the “redundant region”, then we obtain a Reduced
Skeleton with no “Future-level Redundancy”. This is
because X o (n + An)B is the region represented by
the union of all the mazimal elements with size greater
than n:

Xo(m+An)B=|] SnomB.

m>n

(11)

The resulting Reduced Skeleton subsets RS are given
by:

RSV £ (XonB)onB—[Xo(n+An)BlonB (12)

After some simple manipulations on (12), we obtain:

(13)

which is the Reduced Skeleton proposed by Maragos in
[4]. (In [4], An = 1, since only discrete values of n were
considered).

Fig. 3(a) shows the result of the calculation of RS(*)
for the binary image shown in Fig. 2. It contains the
point p and the segment [c,q], where ¢ is the same
“Intralevel” redundant point shown in Fig. 2(c). The
points from the segment (p, c), which are “Future-level”
redundant in the Skeleton, are not present in RS(!).

ngll) =X&nB-[(XE&nB)o(An)BlenB

If we include in “redundant region” of equation (10)
the union of all the representation elements with order
smaller than n as well, we obtain an error-free Reduced
Skeleton, which we denote as RS(2), with no interlevel
redundancy. The union of the representation elements

(a) (b) ()

Fig. 3: (a) The same binary image as shown in Fig.2,
and its Reduced Skeleton RS(1), (b) its Reduced Skeleton
RS(2), (c) its only Minimal Skeleton.



with order smaller than n, which we denote as P,, may
be obtained recursively, as follows:

Poyan =P, U(RSY @nB), n=0,1,...
Po=10

Defining:
Fa2Xo (n + An)B,

we may write the subsets of RS®) as:

RSP 2 XeonB—(PaUF,)6nB  (16)
Fig. 3(b) shows the result of the calculation of RS for
the same binary image as before. It contains only the
points p, ¢ and c¢. The points from the segment (c,q),
which are “Interlevel” redundant in the Skeleton, are
not present in RS®) . The point ¢, which is “Intralevel”
redundant, is still present.

To obtain a Minimal Skeleton, the intralevel redun-
dancy should also be removed. Unfortunately, we still
don’t know how to define a “redundant region” that
would remove this kind of redundancy without affect-
ing the property of exact reconstruction of the Re-
duced Skeletons. In the example of Fig. 3, the Minimal
Skeleton (which is unique in this example) is shown in

Fig. 3(c).

D. Extenston to Multi-Structuring- Element Skeletons
(MSES)

In [5], we define and discuss some of the applications
of the Multi-Structuring-Element Skeleton (MSES).
The MSES is a generalization of the original Skeleton,
using several structuring-elements, instead of just one,
representing images in a more descriptive way than the
original Skeleton [5].

For the simplest case of just 2 structuring-elements,
By and B:, and parameters assuming discrete values

only, the MSES’s subsets Sy ,, are then defined by:
2
Snm =X © A(n,m) - | J[X © A(n,m)] 0 B (17)
=1

where {A(n, m)} is a 2-parameter family of shapes gen-
erated from B; and B; in the following way:

A(n,m) =nB; ® mB; (18)

The MSES is the center of maximal elements taken
from the 2-parameter family {A(n, m)}.

Reduced MSES’s may be obtained from the same
generic relation (9). With the addition of the new pa-
rameter, (10) should be written as:

representation region
RSpm =
of order n, m

(redundant region
of order n, m

) © A(n,m)
) O Aln,m)  (19)

A Reduced MSES with only ntralevel redundancy
(analog to (16)) would have “representation region of

order (n,m)” equals to X o A(n,m), and “redundant
region of order (n,m)” equals to the union of all the
maximal elements different from A(n,m).

In order to define such “redundant region”, we use
the lexzicographic relation of order (<) in N2

(a,b) < (c,d), a,b,c,d € N
3 (20)

(a < c)or (a=candb<d)

The process of the calculation of the Reduced MSES
is done obeying the lexicographic order, in such a way
that a subset RS, ,, is not computed until all the sub-
sets with index smaller then (n, m) are computed. Af-
ter the set RS, ,, is computed, the next subset to be
computed will be RSy smy1, if X © A(n,m+1) #0, or
RSn41,0 otherwise.

We then define P, ,, and F) ,», which are analog to
P,, and F,, defined in the last subsection, by the union
of the representation elements smaller than A(n,m),
and the union of the maximal elements bigger than
A(n, m), respectively.

Ppom recursively in the same way
as P,, “accumulating” the representation regions
Spnm @ A(n, m) for each step (n, m).

It can be shown that F), ,, as defined above, can be
computed at each step (n,m) by the formula:

are found

Fom=[X0A(n,m+1)]U[X 0oA(r+1,0)] (21)
The proposed Reduced MSES, with no interlevel re-
dundancy, is hence defined as:

RSpnm £ XS A(n,m)=(PamUFom)©A(n,m). (22)

E. Minimal MSES

For a particular but important choice of the
structuring-elements of the MSES with 2 structuring-
elements, formula (22) yields a representation with no
redundant points, i.e., a Minimal MSES. For discrete
shapes, the structuring-elements which provide this re-
sult are elements containing exactly 2 points, which
we call discrete elementary directional structuring-
elements. Fig. 4 shows some examples of discrete el-
ementary directional structuring-elements.

It is well known [1] that the ordinary Skeleton, com-
puted with any directional structuring-element, con-
tains no redundancy.

As an extension to this property, the Reduced
MSES obtained in (22), computed with any pair of
structuring-elements from Fig. 4 (or any other pair of
elementary directional elements), contains no intralevel
redundancy.

Since the Reduced MSES from (22) has no interlevel
redundancy, the conclusion is that it contains no re-
dundant points at all. It is therefore a Minimal MSES.

In contrast to 1-parameter families of directional
shapes, in which there is little interest as kernels, the
families of shapes generated by pairs of elementary
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Fig. 4: Some discrete elementary directional elements:

each element is composed of exactly 2 points. (The symbol
“4" represents the origin).

directional structuring-elements are important ones.
E.g., in the case of the horizontal and the wvertical el-
ementary structuring-elements (the first two elements
shown in Fig. 4), the family A(n, m) obtained is com-
posed of all discrete rectangles.

III. EXTRACTION OF ESSENTIAL POINTS

An FEssential point of a Skeleton Representation is
defined to be a point of the Skeleton which, if it is
removed from the original Skeleton, makes the exact
reconstruction impossible [2, 3]. More specifically, a
point ¢ belonging to the Skeleton subset Sy is a Fssen-
tial Point of order k iff:

U Sn@nB | Ul(Sk—{t) @ kBl # X
n#k

(23)

As an example, Fig. 5(a) shows a binary image,
Fig 5(b) shows its Skeleton (computed with a 3x3
square as structuring-element), Fig. 5(c) shows a Min-
imal Skeleton and Fig. 5(d) shows its Essential Points
(which is a subset of the Minimal Skeleton).

The same approach that yields the Reduced Skele-
tons of the last section, also permits us to obtain the
Essential Points of the Skeleton using morphological
operations only. The calculation is performed at each
step of the skeletonization process, so that the Essential
Points of order n are obtained before the calculation of
the Skeleton subsets of orders greater than n.

To extract the Essential Points, equation (9) is writ-
ten in the following way:

Non-
Essential
Points of

order n

(24)

where F P, is the set of Essential Points of order n, and

“Non-Essential Points of order n” are those Skeleton

points of order n which are not Essential Points.
Equation (24) may also be written as follows:

EPp =Sy, —(PyUF,URy) &nB (25)

(.

(b)
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Fig. 5: (a) The binary picture “Tools”, (b) its Skeleton
computed with a 3x3 square, (c) a Minimal Skeleton subset

of (b), (d) the Essential Points of (b).

The union PnUFn U R,, refers to the region represented
by all the Non-Essential Points of order n, i.e., a sub-
region from the representation region of order n, which
is represented more than once.

As before, P, and F, are related, respectively, to
elements “smaller” and “bigger” than nB. F, is the
same as computed in (15). P, is computed recursively
as was done for P, in (14), “accumulating” the regions
covered by Skeleton points of order smaller than n:

Pn-I-An:an(Sn@nB), n:(),l,...
~ 26
Po=1 (26)

The sets {R,} are those regions which are covered
more than once by elements of size n only. An exact



expression for computing R, is:

Bo= () [(Sn—{s}) @ nB] (27)

SESR

The outline of the proof is presented in the Appendix.
Formula (27) is an efficient way to calculate R, only
for large values of n, because in that case S, contains
only few points. For small values of n, though, there
are many points in the corresponding Skeleton subsets,
in which case this formula looses its efficiency.
It can be shown that formula (27) is equivalent to:

Ro= () [Sn @ (nB - {8})] (28)

beEnB

For small values of n, equation (28) is preferable to
(27) because nB in this case contains a small number
of points.

Once R, F, and ]3” are found, the Essential Points
of order n can be obtained by (25). Since the above sets
can be obtained with morphological operations only, as
shown in (15), (26), and (27) or (28), and since (25)
is also morphological, the conclusion is that the ex-
traction of Essential Points can be implemented by a
morphological machine.

As we have done in section II.D, the result expressed
by (25) can be adapted for MSES’s, as well.

IV. CONCLUSION

A morphological approach for obtaining redundancy-
This approach is
able to remove all the interlevel redundancy from the

reduced Skeletons was presented.

Skeleton, leaving only intralevel redundant points. For
Multi-Structuring- Flement Skeletons, and a particular
but an important choice of the structuring-elements,
the approach provides a redundancy-free representa-
tion. A fully morphological method to compute a
redundancy-free Skeleton (Minimal Skeleton) in the
general case, both for MSES’s and for the regular Skele-
ton, is still being sought.

A morphological formula for extracting the Essential
Points of the Skeleton representation is also proposed.

APPENDIX

The outline of the proof of relation (27), which gives
a formula to obtain the sets {R,}, is as follows:

e The region represented by Skeleton points of or-
der n is:

Sp ®nB. (A1)

e The region represented by all the Skeleton points
of order n, except a Skeleton point s € 5, 1is:

(Sn — {s}) ® nB. (A.2)

e The region represented only by the point s is the
difference of the above sets:

Sp ®nB — (Sp — {s}) ®nB. (A.3)
e The union of the above sets, for all the Skeleton
points s € S, is:

| [Sn@nB— (5.~ {sh@nB]2Y. (A4)
SESR

It gives the union of those regions which are each
represented by only one point of order n.

e S, ®nB —Y is the region represented by more
than one point of order n, i.e.,

S, @®nB—Y =R,. (A.5)

e Y may also be written as:

Y=S,@nB- () (S —{shonB. (A6)

SESR

e relation (27) is then obtained considering the last
two items, and the fact that Y is contained in

S, & nB.
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