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Abstract

The Wigner distribution �WD� possesses a number of desirable mathematical properties relevant

to time�frequency analysis� However� the presence of interference terms renders the WD of multi�

component signals extremely di�cult to interpret� In this work� we propose adaptive suppression of

interference terms using the Shift�Invariant Wavelet Packet Decomposition� A prescribed signal is

expanded on its best basis and transformed into the Wigner domain� Subsequently� the interference

terms are eliminated by adaptively thresholding the cross WD of interactive basis functions� according

to their amplitudes and distance in an idealized time�frequency plane� We de�ne a distance measure

that weighs the Euclidean distance with the local distribution of the signal� The amplitude and

distance thresholds control the cross�term interference� the useful properties of the distribution� and the

computational complexity� The properties of the resultant modi�ed Wigner distribution �MWD� are

investigated� and its surpassing performance� in eliminating interference terms while still retaining high

energy resolution� is compared with that of other existing approaches� It is shown that the proposed

MWD is directly applicable to resolving multicomponent signals� Each component is determined as a

partial sum of basis�functions over a certain equivalence class in the time�frequency plane�
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� Introduction

The Wigner distribution �WD� has long been of special interest� because it possesses a number of

desirable mathematical properties ��� ���� including maximal autocomponent concentration in the

time�frequency plane	 However� practical applications of the WD are restricted due to the presence

of interference terms	 These terms render the WD of multicomponent signals extremely di
cult to

interpret	

Several methods� developed to reduce noise and cross�components at the expense of reduced

time�frequency energy concentration� employ smoothing kernels or windowing techniques ��� ��� ���

���	 Unfortunately� the speci
c choice of kernel dramatically a�ects the appearance and quality of

the resulting time�frequency representation	 Consequently� adaptive representations ���� �� ��� often

exhibit performance far surpassing that of 
xed�kernel representations	 However� such methods

are either computationally expensive or have a very limited adaptation range	 Another approach

striving for cross�term suppression with minimal resolution loss ���� ��� uses the Gabor expansion to

decompose the WD	 Interference terms are readily identi
ed as cross WD of distinct basis functions	

Here� a major drawback is the dependence of the performance on the choice of the Gabor window	

An appropriate window selection depends on the data and may vary for di�erent components of the

same signal	 Furthermore� distinct basis functions which are �close� in the time�frequency plane are

often related to the same signal component	 Accordingly� their cross�terms are not interpretable as

interference terms� but rather may have a signi
cant e�ect on the time�frequency resolution	 Qian

and Chen ���� proposed to decompose the WD into a series of Gabor expansions� where the order

of the expansion is de
ned by the maximum degree of oscillation	 They showed that such harmonic

terms contribute minimally to the useful properties� but are directly responsible for the appearance

of interference terms	 In this case� the manipulation of cross�terms is equivalent to including

cross�terms of Gabor functions whose Manhattan distance is smaller than a certain threshold	

However� the order of the expansion has to be determined adaptively and generally depends on the

local distribution of the signal	 In ����� the signal is decomposed into frequency bands� and the

Wigner distributions of all the subbands are superimposed	 This attenuates interferences between
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subbands� but still su�ers interferences within the subbands	 Therefore it is merely suitable for

signals that possess a single component in each subband	 Moreover� the exclusion of bene
cial

cross�terms� which join neighboring basis�functions� invariably degrades the energy concentration

and may arti
cially split a given signal component into several frequency�bands	

In this paper� we propose an adaptive suppression of interference terms using the Shift�Invariant

Wavelet Packet Decomposition �SIWPD� ��� ��	 A prescribed signal is expanded on its best SIWPD

basis� and subsequently transformed into the Wigner domain	 The interference terms are controlled

by adaptively thresholding the cross WD of interactive basis functions according to their distance

and amplitudes in an idealized time�frequency plane �an abstract representation where each basis�

function is associated with a rectangular time�frequency tile� e�g�� �����	 When the distance�

threshold is set to zero� the modi�ed Wigner distribution �MWD� precludes any cross�terms� so

essentially there is no interference terms but the energy concentration of the individual components

is unacceptably low	 When the amplitude�threshold is set to zero and the distance�threshold goes

to in
nity� the MWD converges to the conventional WD	 By adjusting the distance and amplitude

thresholds� one can e�ectively balance the cross�term interference� the useful properties of the

distribution� and the computational complexity	

The distance measure in the idealized plane is related to a degree of adjacency by weighing the

Euclidean time�frequency distance with the self distribution of the basis�functions	 Since the basis�

functions are adapted to the signal�s local distribution� the thresholding of the cross�terms is also

adapted to the local distribution of the signal	 This dispenses with the need for local adjustments

of the associated distance�threshold	

We note that the MWD constitutes an e�ective tool for resolving multicomponent signals	 By

de
ning equivalence classes in the time�frequency plane� we show that a prescribed component

of a multicomponent signal can be determined as a partial sum of basis�functions	 The signal

components are well delineated in the time�frequency plane� and can be recovered from the energy

distribution to within a constant phase factor	

This paper is organized as follows	 In Section �� we review the Wigner distribution� the origin
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of interference terms and the relation to Cohen�s class of distributions	 In Section �� we de
ne the

extended library of wavelet packets and demonstrate the shift�invariant properties of the SIWPD	

Section � introduces the MWD	 We present adaptive decompositions of the WD and show that

the interference terms can be eliminated by thresholding the cross�terms according to a degree of

adjacency in the idealized time�frequency plane	 The general properties of the MWD are presented

in Section �	 Inversion and uniqueness of the MWD are the subjects of Section �	

� The Wigner Distribution

Let Rg�t� �� be the instantaneous auto�correlation of a complex signal g�t�� de
ned as

Rg�t� �� � g�t� ����g��t� ���� ���

where g� denotes the complex conjugate of g	 The Wigner distribution of g�t� is then de
ned as

the Fourier transform �FT� of Rg�t� �� with respect to the lag variable � �����

Wg�t� �� �

Z
Rg�t� ��e

�j�� d� �

Z
g�t� ����g��t� ����e�j�� d� � ���

or equivalently as

Wg�t� �� �
�

��

Z
G�� � ����G��� � ����ej�t d� � ���

where G��� is the Fourier transform of g�t� �the range of integrals is from �� to �� unless

otherwise stated�	 The WD satis
es a large number of desirable mathematical properties ��� ���	

In particular� the WD is always real�valued� it preserves time and frequency shifts and satis
es the

marginal properties�

�
��

R
Wg�t� �� d� � jg�t�j� ���

R
Wg�t� �� dt � jG���j� � ���

One major drawback of the WD is the interference terms between signal components	 Suppose

that a given signal consists of two components�

g�t� � g��t� � g��t� ���
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Then� by substituting this into ��� we have

Wg�t� �� � Wg��t� �� �Wg��t� �� � �RefWg��g��t� ��g ���

where

Wg��g��t� �� �

Z
g��t� ����g���t� ����e�j�� d� ���

is the cross WD of g��t� and g��t�	 This shows that the WD of the sum of two signals is not

the sum of their respective WDs� but has the additional term �RefWg��g��t� ��g	 This term

is often called the interference term or cross term and it is often said to give rise to artifacts	

However� one has to be cautious with the interpretations these words evoke� because any signal

can be broken up into an arbitrary number of parts and the so�called cross terms are therefore

not generally unique and do not characterize anything but our own division of a signal into parts

���	 There exists a natural decomposition where bene
cial cross terms� which enhance the energy

concentration� are distinguished from the undesirable interference terms� which obscure the time�

frequency representation	 This issue is addressed in Sections � and �	

The WD� as well as the Choi�williams ��� and cone�kernel distributions ���� are members of a

more general class of distributions� called Cohen�s class ����	 Each member of this class is given by

Cg�t� ���� �
�

��

Z Z Z
ej���t�����u����� ��g�u� ����g��u� ���� du d�d� ���

�
Z Z

Wg�u� ����t� u� � � �� du d� ����

where ���� �� is the kernel of the distribution� and ��t� �� is the ��D Fourier transform of ���� ��	

Di�erent kernels produce di�erent distributions obeying di�erent properties	 For example� ���� �� �

�� ej�j� j��� e��
����� and w��� j� j sin�	����	�� correspond to the Wigner� Page� Choi�Williams and

Cone�kernel distributions� respectively ����	 The spectrogram� the squared magnitude of the short�

time Fourier transform� is also a member of Cohen�s class� since it can be obtained as a ��D

convolution of the WD�s of the signal and the window	

The interference terms associated with the WD are highly oscillatory� whereas the auto terms

are relatively smooth	 Therefore� the reduced�interference distributions are designed to attenuate
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the interference terms by smoothing the WD with a low�pass kernel ���� ���	 Unfortunately� this

procedure invariably entails a loss of time�frequency concentration	 Accordingly� high energy

concentration and e�ective suppression of interference terms cannot be achieved simultaneously

by merely smoothing the Wigner distribution	

� The Extended Library of Wavelet Packets

Overcomplete libraries of waveforms that span redundantly the signal space encourage adaptive

signal representations	 Instead of representing a prescribed signal on a 
xed basis� it is often useful

to choose a suitable basis that facilitates a desired application� such as compression� identi
cation�

classi
cation or noise removal �denoising� ���� ��� ���	 Of particular interest are the libraries of

wavelet packet bases� which consist of translations and dilations of wavelet packets� and libraries

of local trigonometric bases� comprising sines and cosines multiplied by smooth window functions

���� ���	 The basis functions are localized in the time�frequency plane� and organized in a binary

tree structure where e
cient search algorithms for the best basis can be implemented	

A serious drawback of the wavelet packet decomposition �WPD� and local cosine decomposition

�LCD� ���� is the lack of shift�invariance	 The expansion� as well as the information cost measuring

its suitability for a particular application� may be signi
cantly in�uenced by the alignment of

the input signal with respect to the basis functions	 Furthermore� the time�frequency tilings�

produced by the best�basis expansions� do not generally conform to standard time�frequency

energy distributions ���	 Hence we employ modi
ed versions which induce shift�invariance� lower

information cost and improved time�frequency resolution ��� �� ��	

Let us speci
cally consider the shift invariant wavelet packet decomposition �SIWPD� ��� ��	

The library of bases is extended by introducing an additional degree of freedom that adjusts the

time�localization of the basis functions	 This degree of freedom is practically incorporated into

the search algorithm as an adaptive even�odd down�sampling	 That is� following the low�pass and

high�pass 
ltering� when expanding a parent�node� we retain either all the odd samples or all the

even samples� according to the choice which minimizes the cost function	
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Let f
n�t� � n � ZZ�g be a wavelet packet family ���� generated by


�n�t� �
p
�
X
k�ZZ

hk
n��t� k� ����


�n���t� �
p
�
X
k�ZZ

gk
n��t� k� ����

where gk � ����kh��k� and 
��t� � ��t� is an orthonormal scaling function� satisfying

h��t� p�� ��t� q�i � �p�q� p� q � ZZ � ����

The extended library of wavelet packets is de
ned as the collection of all the orthonormal bases

which are subsets of n
B��n�m � � � 
 � L� � � n�m � �L��

o
� ����

where L denotes the 
nest resolution level� and

B��n�m �
n
����
n

h
���t� ��Lm�� k

i
� � � k � ��

o
� ����

Although this library is larger than the standard wavelet packet library by a square power� it still

retains a tree con
guration facilitating fast search algorithms ���	 The additional parameter m

provides a crucial degree of freedom� required for adjusting the time location of basis functions	

When an analyzed signal is translated in time by � � q � ��L �q � ZZ�� a new best�basis is selected

whose elements are also translated by � compared to the former best�basis	 Thus the expansion

coe
cients remain unchanged� and the corresponding representation is time�shifted by the same

period	

The relative advantages of SIWPD over WPD are as follows ���� �� Shift�invariance� �� Lower

information cost� �� Improved time�frequency resolution� �� A more stable information cost across

a prescribed data set� �� Controllable computational complexity �down to O�Nlog�N�� at the

expense of the information cost	 To demonstrate the shift�invariant properties of the SIWPD and

its enhanced time�frequency representation� we compare the expansions of signals g�t� �Fig	 �� and

g�t � ����	 These signals contain �� � ��� samples� and are identical to within � time�shifted

samples	 For de
niteness� we choose C�� to serve as the scaling function �C�� corresponds to ���tap
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coi�et 
lters ���� page ���� ����� and the Shannon entropy as the information cost function� de
ned

byM�fxig� � �Pi�xi �	� x
�
i log x

�
i �e�g�� �����	 Figs	 � and � display the best�basis expansions under

the WPD and the SIWPD algorithms� respectively	 The sensitivity of WPD to temporal shifts is

obvious� while the best�basis SIWPD representation is indeed shift�invariant and characterized by

a lower entropy and improved time�frequency resolution	

� Adaptive Decomposition of theWigner Distribution and Elim�

ination of Interference Terms

In this section� we present adaptive decompositions of the WD using overcomplete libraries of

orthonormal bases	 TheWigner domain interference terms are controlled adaptively by thresholding

the cross WD of interactive basis functions according to their degree of adjacency in the idealized

time�frequency plane	 In particular� we demonstrate the superiority of the modi
ed distribution

by employing the shift�invariant wavelet packet decomposition	

Let B denote an overcomplete library of orthonormal bases� and let

g�t� �
X
	�IN

c	�	�t� � f�	g	�IN � B ����

be the best�basis expansion of the signal g	 Then by inserting ���� into ���� the Wigner distribution

of g can be written as

Wg�t� �� �
X

	�	��IN

c	c
�
	�W
��
�� �t� �� ����

�
X
	�IN

jc	j�W
��t� �� � �
X
	�	�

Refc	c�	�W
��
��
�t� ��g � ����

Equation ���� partitions the traditional WD into two subsets	 The superposition of the auto WD

of the basis�functions� represents the auto�terms	 The second summation� comprising cross WD of

basis�functions� represents the cross�terms	 Cross terms associated with the Wigner distribution�

and other bilinear distributions� should not be always interpreted as interference terms	 Any signal
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can be sub�divided in an in
nite number of ways� each generating di�erent cross terms	 Therefore�

we need to distinguish between generally undesirable interference�terms and bene
cial cross�terms

that primarily enhance useful time�frequency features	

The cross WD of distinct basis�functions is oscillating and centered in the midway of the

corresponding auto�terms ���� ���	 The oscillation rate is proportional to the distance between the

auto�terms	 On the other hand� useful properties such as the time marginal� frequency marginal�

energy concentration and the instantaneous frequency property ����� are achieved by averaging the

Wigner distribution	 Therefore the overall contribution of each cross�term component is inversely

proportional to the distance between the corresponding basis�functions in the time�frequency plane

���� ���	

A useful distance measure between pairs of basis�functions is obtainable in the idealized time�

frequency plane ����	 Recall that in the idealized plane� each basis�function is symbolized by a

rectangular cell �tile� whose area is associated with Heisenberg�s uncertainty principle� and its

shade is proportional to the corresponding squared coe
cient ����	 We de
ne the distance between

a pair of basis�functions by

d��	� �	�� �

�
��t	 � �t	���

�t	�t	�

�
���	 � ��	���

��	��	�

����
����

where ��t	� ��	� is the position of the cell associated with �	� �t	 and ��	 denote the time and

frequency widths �uncertainties�� respectively	 Similar notations apply to �	�	

Since the best basis tends to represent the signal using a relatively small number of signi
cant

expansion coe
cients� the summations in ���� can be restricted to basis�functions whose coe
cients

are above a prescribed cuto�� and to pairs that are �close� �su
ciently small values of d��	� �	���	

The modi
ed Wigner distribution �MWD� is then given by

Tg�t� �� �
X
	�


jc	j�W
��t� �� � �
X

f	�	�g��

Refc	c�	�W
��
�� �t� ��g ����
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where

� � f� j jc	j � �Mg� M � max
	
fjc	jg ����

 � ff�� ��g j �� d��	� �	�� � D� jc	c	� j � ��M�g � ����

� and D denote thresholds of relative amplitude and time�frequency distance� respectively	 When

D � �� the MWD precludes any cross�terms� so essentially there are no interference terms but

the energy concentration of the individual components is generally low	 As D goes to in
nity

and � goes to zero� the MWD converges to the conventional WD	 By adjusting the distance and

amplitude thresholds� one can e�ectively balance the cross�term interference� the useful properties

of the distribution� and the computational complexity	

Here� rather that the usual Euclidean distance �
p
��t	 � �t	��� � ���	 � ��	���� or the Manhattan

distance �j�t	 � �t	� j � j��	 � ��	� j� ����� we use the measure de
ned in ����� which weighs the time�

frequency distance with the self distribution of the basis elements	 Since the basis elements

are selected to best match the signal�s local distribution� such a distance measure implicitly

characterizes the signal itself	 Accordingly� the thresholding of the cross�terms is also adapted to

the local distribution of the signal� dispensing with the need for local adjustments of the associated

distance�threshold	

The extended library of wavelet packets includes basis�functions of the form


��n�m�k�t� � ����
n
h
���t� ��Lm�� k

i
����

where 
 is the resolution�level index �� � 
 � L�� n is the frequency index �� � n � �L���� m is

the shift index �� � m � �L��� and k is the position index �� � k � ���	 Each basis�function

is symbolically associated with a rectangular tile in the time�frequency plane which is positioned

about

�t � ���k � ��Lm� ��L�� � ��Ch � �Ch � Cg�R�n� � ����

�f � ���L�GC���n� � ���� � ����

��



where

Ch
�
�

�

khk�
X
k�ZZ

kjhkj� � Cg
�
�

�

kgk�
X
k�ZZ

kjgkj� � ����

are respectively the energy centers of the low�pass and high�pass quadrature 
lters ���� ���� R�n�

is an integer obtained by bit reversal of n in a L � 
 bits binary representation� and GC�� is the

inverse Gray code permutation	 The width and height of the tile are given by

�t � ��� � �f � ���L � ����

For a given signal� the SIWPD yields the best expansion in the extended library with respect to

an additive cost function	 It is demonstrated below that it would be advantageous to search for

the best orthonormal basis using an extended library of wavelet packets� rather than using compu�

tationally expensive algorithms for searching optimal �not necessarily orthonormal� expansions in

a conventional wavelet packet library	 The extended library provides �exibility in expanding the

signal� while the orthonormality contributes to a manageable complexity of the search procedure	

For example� Fig	 � depicts the Wigner distribution and spectrogram for g�t�	 The signal g�t�

�Fig	 �� comprises a short pulse� a tone and a component with nonlinear frequency modulation	 The

spectrogram has no interference terms� at the expense of comparatively poor energy concentration	

The optimal expansions of g�t� obtained by the Method of Frames �minimum l� norm� �����

Matching Pursuit ����� Basis Pursuit �minimum l� norm� ��� and WPD are illustrated in Fig	 �	

While these algorithms use the conventional library of wavelet packets and fail to represent the

signal e
ciently� the SIWPD �Fig	 ��f�� facilitates an e
cient representation by a small number of

coe
cients	 Furthermore� its computational complexity �� �� ��� multiplications� is signi
cantly

lower than those associated with the Matching Pursuit �� ��� ��� multiplications� and the Basis

Pursuit �� ���� ��� multiplications�	

Fig	 � illustrates the MWD for g�t�� using various distance�thresholds	 When D � �� there are

no interference terms� but the energy concentration of individual components is insu
cient	 D � �

leads to improved energy concentration� yet� no signi
cant interference terms are present	 As D

gets larger� the interference between components becomes visible and the MWD converges to the

��



conventional WD �cf� Fig	 ��a��	 An acceptable compromise is usually found between D � ��� and

D � ���	

Fig	 ��a� shows the MWD for g�t�� obtained via the SIWPD with thresholds D � � and

� � ���	 Figs	 ��b�� �c�� �d�� �e� and �f� describe� respectively� the WD� the Smoothed pseudo

Wigner distribution� the Choi�Williams distribution� the cone�kernel distribution and the reduced

interference distribution ����	 Clearly� the SIWPD based MWD achieves high time�frequency

resolution� and is superior in eliminating interference terms	

The particular basis� selected for representing a prescribed signal� plays an important role in the

MWD	 As long as the �best� basis elements are localized in time�frequency and reasonably matched

to the local distribution of the signal� each signal component is characteristically represented by

a few signi
cant elements	 Thus� by restricting the cross�terms to neighboring basis�functions� we

eliminate interference terms between distinct components� and even within components having a

nonlinear frequency modulation	 On the other hand� whenever the signal is arbitrarily decomposed

into elements that have no relation to the actual signal distribution� the performance of the MWD

may deteriorate	 The SIWPD constitutes an e
cient algorithm for selecting the most suitable

basis	 Similarly to standard WPD� the SIWPD library is generated by a single �mother�wavelet�

���	 Although the library is �exible and versatile enough to describe various local features of the

signal� the choice of the mother�wavelet may a�ect the eventual performance	

The signal g�t�� depicted in Fig	 �� can be represented by seven basis�function� belonging to

the extended wavelet packet library with C�� as the mother�wavelet �cf� Fig	 ��a��	 If the SIWPD

utilizes decomposition 
lters that correspond to a di�erent mother�wavelet� then the entropy of

the representation is expected to be higher and correspondingly the performance of the MWD

will deteriorate	 Figs	 � and � illustrate best�basis expansions and MWDs for g�t�� obtained

by the SIWPD with D� and S� as mother�wavelets �D� corresponds to ��tap Daubechies least

asymmetric wavelet 
lters� and S� corresponds to ��tap Daubechies minimum phase wavelet 
lters

���� pp	 ���������	 A comparison with Figs	 ��f� and ��b� shows that despite variations in the time�

frequency tilings� the MWD managed to delineate the components of the signal and e�ectively
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eliminate the interference terms	

Fig	 �� illustrates the best�basis expansion and MWD for g�t�� obtained using an extended

library of local trigonometric bases and a corresponding best�basis search algorithm� namely the

shift�invariant adapted�polarity local trigonometric decomposition �SIAP�LTD� ��� ��	 Here� the

basis�functions fail to represent the signal e
ciently	 We may compare the entropy �� ����� with

that obtained with the SIWPD ����� with C��� ���� with D�� and ���� with S��	 The reduced

performance of the SIAP�LTD for this particular signal stems from the fact that short pulses�

expanded on local trigonometric bases� require a large number of decomposition levels ���	 This

entails a steeper rising cuto� function� and consequently basis�functions which are less localized in

frequency ����	 Notice that the �visual quality� of the MWD is well correlated with the entropy

attained by the best basis expansion	 Lower entropy generally yields �better� �well delineated

components� high resolution and concentration� MWD	 It appears that �entropy� can serve as a

reasonable measure for a quantitative comparison between MWDs	

� General Properties

In this section we investigate the MWD in more detail	

Realness� The MWD is always real� even if the signal or the basis functions are complex	

T �
g � Tg ����

This property is a direct consequence of the realness of the Wigner distribution	

Shift�Invariance� Shifting a signal by � � k � ��J �k� J � ZZ�� where J is 
nest resolution

level of the best�basis decomposition� entails an identical shift of the MWD� i�e��

if !g�t� � g�t� �� then T
g�t� �� � Tg�t� �� �� � ����

This property follows from the shift�invariance property of the best�basis decomposition	 To see

this� let g�t� �
P

	 c	�	�t� be the best�basis expansion of g� and let !g�t� � g�t � ��� � � k � ��J 	

��



Then� using the shift�invariance of the best�basis decomposition� we have

!g�t� �
X
	

!c	 !�	�t� �
X
	

c	�	�t� �� ����

is the best�basis expansion of !g� i�e�� the best�basis for !g is identical to within a time�shift � to the

best�basis for g� and the corresponding expansion coe
cients are the same	 The MWD of g and !g

are given by

Tg�t� �� �
X
	�


jc	j�W
��t� �� � �
X

f	�	�g��

Refc	c�	�W
��
��
�t� ��g � ����

T
g�t� �� �
X
	�



jc	j�W
��t� �� �� � �
X

f	�	�g�
�

Refc	c�	�W
� �
��
�t� �� ��g � ����

where we used the shift�invariance property�

W 

�� 

��
�t� �� � W
��
��

�t� �� �� � W 

��t� �� � W
��t� �� �� � ����

Now� since the expansion coe
cients of g and !g are identical �!c	 � c	�� and the time�frequency

distance between pairs of basis�functions remains unchanged �d� !�	� !�	�� � d��	� �	���� the sets !�

and ! are identical to � and  � respectively	 It is therefore concluded that T
g�t� �� � Tg�t� �� ��	

Symmetry in Frequency� Real signals have symmetrical spectra	 For symmetric spectra�

the Wigner distribution is symmetric in the frequency domain�

Wg�t���� � Wg�t� ��� Wg�s�t���� � Ws�g�t� �� � ����

Thus� for real signals and real basis�functions� the MWD retains the same symmetries� i�e��

Tg�t���� � Tg�t� �� � ����

Symmetry in Time� For symmetrical signals� the Wigner distribution is symmetric in the

time domain�

Wg��t� �� � Wg�t� ��� Wg�s��t� �� � Ws�g�t� �� � ����

��



However� the MWD is not necessarily symmetric� since the best�basis decomposition is generally

asymmetric	 Still� con
ning ourselves to symmetric basis�functions �entailing either biorthogonal or

complex�valued basis�functions ����� and restricting B� the library of bases� to those bases satisfying

f�	g	�IN � B �� f�	�t�g	�IN � f�	��t�g	�IN �

the best�basis decomposition becomes symmetric� rather than shift�invariant	 In that case� the

MWD is symmetric in time�

Tg��t� �� �
X
k�


jckj�W
k��t� �� � �
X

fk��g��

Refckc��W
k�
���t� ��g

�
X
k��


jck� j�W

k�
�t� �� � �

X
fk����g��

Refck�c���W

k�
�


��
�t� ��g

� Tg�t� �� �

Total Energy� Integrating the general form of the MWD with respect to time and frequency

shows that the total energy is bounded by the energy of the signal�

�

��

Z
dt

Z
d� Tg�t� w� �

X
	�


jc	j� �
X
	

jc	j� � kgk� ����

where we have used

�

��

Z
dt

Z
d� W
k �
��t� w� � h�k� ��i � �k�� �

Observe that the di�erence between the total energy and the energy of the signal essentially stems

from the smallest expansion coe
cients	 In fact� if we set the amplitude threshold ��� to zero� the

set of indices � runs over all the basis�functions� and thus the total energy equals the energy of the

signal	

Positivity� The interpretation of the conventional WD as a pointwise time�frequency energy

density is generally restricted by the uncertainty principle and by the fact that the WD may locally

assume negative values ���� ��� ���	 However� the nonnegativity and interference terms are closely

related� and in many cases the suppression of interference terms accompanies reduction of negative

��



values in magnitude ����	 Thus� reduction of the interference terms associated with the WD� entails

comparable attenuation of its negative values	

� Inversion and Uniqueness

In this section we show that the components that comprise a given signal can be recovered from the

MWD� to within an arbitrary constant phase factor and to within the errors caused by neglecting

low weight basis constituents	

��� Equivalence Classes in the Time�Frequency Plane

A multicomponent signal is one that has well delineated regions in the time�frequency plane	

Examples of multicomponent signals are illustrated in Fig	 ��	 One of the advantages of the

MWD is its capability to resolve a multicomponent signal into disjoint time�frequency regions	

De�nition � Let X � � 	 f� j f�� ��g �  for some �� � �g be the indices set of the signi�cant

basis functions� i�e�� the basis functions which contribute to the MWD� A pair of indices k� 
 � X

are said to be equivalent� denoted by k � 
� if k � 
 or alternatively there exists a �nite series

f�igNi	� such that f�i� �i��g �  for i � �� �� � � � � N � � and fk� ��g� f
� �Ng �  �

Clearly� � is an equivalence relation on X � since it is re�exive �k � k for all k � X� symmetric

�k � 
 implies 
 � k� and transitive �k � 
 and 
 � m imply k � m�	 The equivalence relation

means that the corresponding basis�functions are linked in the time�frequency plane by a series of

consecutive adjacent basis�functions	

Denote by

�k � f� � X j � � kg ����

the equivalence class for k � X 	 Then� for any k� 
 � X either �k � �� or �k 
 �� � �	 Hence�
f�k jk � Xg forms a partition ofX � and each equivalence class can be related to a single component

��



of the signal	 The number of components which comprise the signal g is determined by the number

of distinct equivalence classes in X 	

For example� refer to the multicomponent signal s�t�� depicted in Fig	 ��	 Its best�basis

decomposition �Fig	 ��� shows that it can be expressed as the sum of six basis�functions� s�t� �

P�
k	� ck�k	 In this case� with an appropriate distance�threshold �D � ��� we obtain

� � f�� �� �� �� �� �g� X �

 � ff�� �g f�� �g f�� �g f�� �gg �

Thus there are two distinct equivalence classes on X �

�� � �� � �� � f�� �� �g � �I �

�� � �� � �� � f�� �� �g � �II �

Accordingly� we presume that the signal consists of two components�

s � sI � sII

where

sI �
X
k�
I

ck�k � sII �
X

k�
II

ck�k �

These components� depicted in Fig	 ��� are associated with the two well delineated time�frequency

regions in the MWD domain �Fig	 ���a��	

��� Recovering the Components of a Multicomponent Signal

The components of a multicomponent signal are given by the partial sums of basis�functions with

respect to equivalence classes	 They can also be recovered from the MWD to within an arbitrary

constant phase factor in each signal component� and to within errors generated by neglecting small

basis constituents �small auto�terms� small cross�terms� as well as interference terms that correspond

to distant basis functions�	

��



Lemma � Let f�kgk�IN be the best basis for g�t�� and let Wk�� � W
k�
� be the cross Wigner

distribution of pairs of basis�functions� Then the set fWk��gk���IN is an orthonormal basis for

L��IR
��� and the expansion coe�cients for the MWD are given by

ck�� � hTg�Wk��i �
��
�

ckc
�
� � if k � 
 � � or fk� 
g �  �

�� otherwise �
����

where

hTg�Wk��i �
�

�

��

Z Z
Tg�t� ��W

�
k���t� �� dt d�

Proof� We 
rst need to show that the system fWk��gk���IN is orthonormal and complete in L��IR
��	

Orthonormality is given by

hWk���Wm�ni �
�

��

Z
dt

Z
d�

Z
d�

Z
d� � �k�t�

�

�
�����t�

�

�
���m�t�

� �

�
��n�t � � �

�
�e�j�����

��

�
Z
dt

Z
d� �k�t �

�

�
�����t�

�

�
���m�t�

�

�
��n�t� �

�
�

� h�k� �mi h�n� ��i � �k�m���n �

and completeness is satis
ed by

������
X
k���IN

Wk���t� ��W
�
k���t

�� ���

�
�

��

X
k���IN

Z
d�

Z
d� � �k�t�

�

�
�����t�

�

�
�e�j����k�t

� �
� �

�
����t

� � � �

�
�e�j�

�� �

�
�

��

Z
d�

Z
d� � ��t� t� � �

�
�
� �

�
���t� t� �

�

�
� � �

�
�e�j���j�

�� �

� ��t� t�� � �
��

Z
ej���

����d� � ��t� t����� � ��� �

Now� the MWD can be expressed in the following form�

Tg �
X
k�


jckj�Wk�k � �
X

fk��g��

Refckc��Wk��g �
X
k���IN

ck��Wk�� � ����
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Therefore� by the uniqueness of the expansion� the relation in Eq	 ���� holds	

Let k � �� and let �k be its equivalence class	 Then for any 
 � �k there exists a 
nite series

f�igNi	� such that f�i� �i��g �  for i � �� � � � � N � � and fk� ��g� f
� �Ng �  	 By Eq	 ���� we have

jckj� � hTg�Wk�ki � ����

ckc
�
	� � hTg�Wk�	�i � ����

c	ic
�
	i��

�
�
Tg�W	i�	i��

�
� i � �� � � � � N � � � ����

c	Nc
�
� � hTg�W	N ��i � ����

which shows that c� has a recursive relation to ck� and ck can be recovered from the MWD up to a

phase factor	 Accordingly� each component of the signal can also be recovered up to an arbitrary

constant phase factor by

sk �
X
��
k

c��� � ����

The constant phase factor in each component of the signal clearly drops out when we calculate the

MWD �as it does for the WD�	 Therefore� it cannot be recovered	 Summation of distinct signal

components generally yields a di�erent signal that has the same MWD	 For example� we observed

that the signal s in Fig	 �� consists of two components� s � sI � sII 	 The di�erence of these

components� generates another signal !s � sII � sI �cf� Fig	 ���� which has the same MWD as s	

In some applications� such as pattern recognition� it is actually desirable that signals consisting of

the same components will be identi
ed� irrespective of their relative phase	 The MWD provides an

e
cient technique for doing so	

� Summary

The main issue investigated in this paper is that of adaptive decompositions of the Wigner distri�

bution and suppression of interference terms� leading to a newly de
ned modi
ed Wigner space	

A prescribed signal is expanded on its best basis using the SIWPD� and subsequently transformed

into the Wigner domain	 The resulting distribution is modi
ed by restricting the auto�terms

��



and cross�terms to basis�functions whose normalized coe
cients are larger in magnitude than a

certain amplitude�threshold �� and to pairs whose time�frequency distance is smaller than a speci
ed

critical distance D	 We have shown that the distance and amplitude thresholds control the cross�

term interference� the useful properties of the distribution� and the computational complexity	 A

smaller distance�threshold better eliminates the interference terms� but tends to lower the energy

concentration	 A larger distance�threshold improves the time�frequency resolution at the expense

of retaining additional interference terms	 When the amplitude�threshold is set to zero and the

distance�threshold goes to in
nity� the MWD converges to the conventional WD	 Appropriate

threshold values �D � �� � � ���� combine high resolution� high concentration and suppressed

cross�term interference at a manageable computational complexity	

We have compared alternative libraries� showing that interference terms between distinct com�

ponents can be e
ciently eliminated� as long as the localization properties of basis elements aptly

resemble that of the signal	 The visual quality of the MWD is well correlated with the entropy

attained by the best basis expansion� facilitating a quantitative comparison between energy distribu�

tions	 The MWD is thus e�ective for resolving multicomponent signals	 The signal components are

determined as partial sums of basis�functions over certain equivalence classes in the time�frequency

plane	

The proposed methodology is extendable to other distributions �e�g�� the Cohen class� and

other �best�basis� decompositions	 However� the properties of the resulting modi
ed forms clearly

depend on the particular distribution� library of bases and best�basis search algorithm which are

employed	
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Figure Captions

Fig	 �� Test signal g�t� consisting of a short pulse� a tone and a nonlinear chirp	

Fig	 �� E�ect of a temporal shift on the time�frequency representation using the WPD with ���tap

coi�et 
lters� �a� g�t� in its best basis� Entropy� ����	 �b� g�t � ���� in its best basis�

Entropy� ����	

Fig	 �� Time�frequency representation using the SIWPD with ���tap coi�et 
lters� �a� g�t� in its

best basis� Entropy� ����	 �b� g�t � ���� in its best basis� Entropy� ����	 Compared

with the WPD �Fig	 ��� bene
cial properties are shift�invariance and lower information

cost	

Fig	 �� Contour plots for the signal g�t�� �a� Wigner distribution� �b� Spectrogram	 Compared

with the WD� the spectrogram does not have undesirable interference terms but the energy

concentration is poor	

Fig	 �� Time�frequency tilings for the signal g�t�� using the library of wavelet packet bases �gener�

ated by ���tap coi�et 
lters� and various best�basis methods� �a� Method of Frames �min�

imum l� norm�	 �b� Matching Pursuit	 �c� Basis Pursuit �minimum l� norm�	 �d� Wavelet

Packet Decomposition �minimum l� norm�	 �e� Wavelet Packet Decomposition �minimum

Shannon entropy�	 �f� Shift�Invariant Wavelet Packet Decomposition �minimum Shannon

entropy�	

Fig	 �� The modi
ed Wigner distribution for the signal g�t�� combined with the SIWPD and

various distance�thresholds� �a� D � �� �b� D � �� �c� D � �� �d� D � �	 For D � �� the

energy concentration is not su
cient	 For D � �� the energy concentration is improved by
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cross�terms within components	 As D gets larger� the interference between components

becomes visible and the modi
ed Wigner distribution converges to the conventional WD

�cf� Fig	 ��	 A good compromise has been found for ��� � D � ���	

Fig	 �� Mesh plots for the signal g�t�� �a� The modi
ed Wigner distribution combined with the

SIWPD and distance�threshold D � �� �b� Wigner distribution� �c� Smoothed pseudo

Wigner distribution� �d� Choi�Williams distribution� �e� Cone�kernel distribution� �f� Re�

duced interference distribution	 The modi
ed Wigner distribution yields an adaptive

distribution where high resolution� high concentration� and suppressed interference terms

are attainable	

Fig	 �� Time�frequency representation for the signal g�t�� using the SIWPD with ��tap Daubechies

least asymmetric wavelet 
lters� �a� The best�basis tiling� entropy� ����	 �b� The modi
ed

Wigner distribution �D � �� � � ����	

Fig	 �� Time�frequency representation for the signal g�t�� using the SIWPD with ��tap Daubechies

minimum phase wavelet 
lters� �a� The best�basis tiling� entropy� ����	 �b� The modi
ed

Wigner distribution �D � �� � � ����	

Fig	 ��� Time�frequency representation for the signal g�t�� using the SIAP�LTD� �a� The best�basis

tiling� entropy� ����	 �b� The modi
ed Wigner distribution	

Fig	 ��� Examples of multicomponent signals� �a� Superposition of two linear chirps	 �b� Super�

position of two nonlinear chirps	 Neither the time representation nor the energy spectral

density indicate whether the signals are multicomponent	 The joint time�frequency repre�

sentations� however� show that the signals are well delineated into regions	

Fig	 ��� A multicomponent signal s�t�	

Fig	 ��� The best�basis decomposition of s�t�	

Fig	 ��� The components of the signal s	 �a� The component sI associated with the equivalence

class �I 	 �b� The component sII associated with the equivalence class �II 	

Fig	 ��� Contour plots for the signal s�t�� �a� Modi
ed Wigner distribution� �b� Wigner distribu�

tion	

Fig	 ��� The signals !s � �sI � sII �bold line� and s � sI � sII �light line� are di�erent	 How�

ever� since they consist of the same components� they have the same modi
ed Wigner

distribution	

��



0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

A
m

pl
itu

de

Figure �� Test signal g�t� consisting of a short pulse� a tone and a nonlinear chirp	
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Figure �� Time�frequency representation using the SIWPD with ���tap coi�et 
lters� �a� g�t� in

its best basis� Entropy� ����	 �b� g�t� ���� in its best basis� Entropy� ����	 Compared with the
WPD �Fig	 ��� bene
cial properties are shift�invariance and lower information cost	
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Figure �� Contour plots for the signal g�t�� �a� Wigner distribution� �b� Spectrogram	 Compared
with the WD� the spectrogram does not have undesirable interference terms but the energy
concentration is poor	
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Figure �� Time�frequency tilings for the signal g�t�� using the library of wavelet packet bases
�generated by ���tap coi�et 
lters� and various best�basis methods� �a� Method of Frames

�minimum l� norm�	 �b� Matching Pursuit	 �c� Basis Pursuit �minimum l� norm�	 �d� Wavelet

Packet Decomposition �minimum l� norm�	 �e� Wavelet Packet Decomposition �minimum Shannon
entropy�	 �f� Shift�Invariant Wavelet Packet Decomposition �minimum Shannon entropy�	
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Figure �� The modi
ed Wigner distribution for the signal g�t�� combined with the SIWPD and
various distance�thresholds� �a� D � �� �b� D � �� �c� D � �� �d� D � �	 For D � �� the energy
concentration is not su
cient	 For D � �� the energy concentration is improved by cross�terms
within components	 As D gets larger� the interference between components becomes visible and the
modi
ed Wigner distribution converges to the conventional WD �cf� Fig	 ��	 A good compromise
has been found for ��� � D � ���	
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Figure �� Mesh plots for the signal g�t�� �a� The modi
ed Wigner distribution combined with
the SIWPD and distance�threshold D � �� �b� Wigner distribution� �c� Smoothed pseudo
Wigner distribution� �d� Choi�Williams distribution� �e� Cone�kernel distribution� �f� Reduced
interference distribution	 The modi
ed Wigner distribution yields an adaptive distribution where
high resolution� high concentration� and suppressed interference terms are attainable	
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Figure �� Time�frequency representation for the signal g�t�� using the SIWPD with ��tap
Daubechies least asymmetric wavelet 
lters� �a� The best�basis tiling� entropy� ����	 �b� The
modi
ed Wigner distribution �D � �� � � ����	
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Figure �� Time�frequency representation for the signal g�t�� using the SIWPD with ��tap
Daubechies minimum phase wavelet 
lters� �a� The best�basis tiling� entropy� ����	 �b� The
modi
ed Wigner distribution �D � �� � � ����	
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Figure ��� Time�frequency representation for the signal g�t�� using the SIAP�LTD� �a� The best�
basis tiling� entropy� ����	 �b� The modi
ed Wigner distribution	
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Figure ��� Examples of multicomponent signals� �a� Superposition of two linear chirps	
�b� Superposition of two nonlinear chirps	 Neither the time representation nor the energy spectral
density indicate whether the signals are multicomponent	 The joint time�frequency representations�
however� show that the signals are well delineated into regions	
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Figure ��� A multicomponent signal s�t�	
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Figure ��� The best�basis decomposition of s�t�	
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Figure ��� The components of the signal s	 �a� The component sI associated with the equivalence
class �I 	 �b� The component sII associated with the equivalence class �II 	
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Figure ��� Contour plots for the signal s�t�� �a� Modi
ed Wigner distribution� �b� Wigner
distribution	
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Figure ��� The signals !s � �sI �sII �bold line� and s � sI �sII �light line� are di�erent	 However�
since they consist of the same components� they have the same modi
ed Wigner distribution	


