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TRANSMISSION MATRIX OF A CLASS OF
DISCRETE-TIME SYSTEMS

Indexing terms: Discrete-time systems, Time-varying systents,
Linear systems

Some new propcrtzes of lhe transmlssxon mznrl\( of the class of

scalar, linear, discrete-time-varying systems, of order m, which

are totally m-controllable and totally m-observable, are found.

The results can be applied to the design, in the time domain,

of discrete-time-varying or time-invariant systems.
Introduction: The input-output relations of a single-input
single-output nonanticipatory linear discrete-time-varying
system, which is initially relaxed, are given by

n

yn)= 2 h(n, K)utk) (nz=kz=n) . . . (1)

k=ng
where u(n) and y(n) are the input and output signals,
respectively, and h(n, k) is the response of the system to a unit
impulse d,c (Kronecker delta), satisfying A(m, k) = 0 for

k > n. For convenience, we assume that g = 0.

The convolution summation in eqn. 1 can also be expressed

in matrix form as

)’: Hi . e I . R
where* it = [u(0) u(1) u(2)... = [y(0) y(1) y(2)...7, and H
is the lower triangular matnx

"h(0,0) 0 0 0 s
H - h(1,0) hA(1,1) 0 0 ... T

h(2,0) h(2,1) h(2,2) O ..

The matrix H in eqn. 3 is known as the transmission matrix' =3
and has been used for the analysis and design in the time
domain of time-varying and time-invariant sampled-data
systems.!- % 3

Input—output representation: Consider the system S,, of
order m, which is described by the state equations

x(n+1) = A(n) x(n)+ b(n) u(n)

y(r) = ¢’(n) x(n)+d(n) u(n) @)
where
0 1 0 ... 0
[ 0 0 1 :
A(n) = Ao(n) 2 . (5a)
. . . 1
l_am(n) _am—l(") e "‘al(n)
b(n) = [by(n) ba(n)...b(m)) . . . . . . (5B)
cm=coll 0...0. . . . . . . (50

As it is well known, the above canonical form of S, is directly
related to the input-output representation of S, i.e. to the
scalar difference equation, of order m,

Ln)y(n)=M@mu(n) . . . . . . . . (6

where L(n) and M (n) are operators given by

Liy=F aE"" (@=1) . . . . . (Ta)
i=0

M) = 3 BAm) E' {Boln) = d(ntm), . . (7b)
i=0

in which E is the advance operator, i.e. Ey(n) = y(n+1).

The coefficients f;(n) can easily be determined by deriving
the form of eqn. 6 from egns. 4 and 5.

The impulse-response function A(n, k) of a system which is
realisable in the form of eqn. 4 can be shown to be necessarily
separable in # and & (as in the ccntinuous-time case), i.e.
of the form

m

h(n, k) ,_‘ f mgilk)=fngk) (n>k=0) (8
For k = n, however, fi(n, n) = d(n), as is evident from eqn. 4.
If it is further possible to describe the system in the form

* [n the following, a prime denotes ‘transpose’
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of egn. 6, the functions fi(n), i = 1,2, ..., m, appearing in
eqn. 8, are® linearly independent solutions of the homo-
geneous equation L(n)y(n) = 0. Equivalently, as can be
verified, a fundamental matrix* X,(n) of S, is given by the
Casorati Matrix® C,(n) defined below.

Xo(n) = Cu(n)

Si(m) L0 o fuln) 1
A filn+1) frn+1) c fuln+ 1)
: ; z ©)
Siln+m=1)  fatn+m—=1) ... fu(n+m—1)

If a given impulse-response function h(n, k) is realisable by a
system of the form of eqn. 4, the triplet [A(n), b(n), ¢'(n)]
is called a realisation. Clearly, [I, g(n), f'(n)] is a realisation
of eqn. 8 and will be named here a basic realisation.
Application of equivalence transformations* to the basic
realisation yields other realisations of the same h(n, k).
Specifically, if the Casorati matrix C,(n) is used for such a
transformation (provided that it is nonsingular), one obtains

A(n) = Con+ 1) C,m (1) = Ao(n) . (10a)
b(n) = Co(n+1) g(n) = [h(n+1, n)...h(n+m, n)Y’ . (10h)
) =fm)Catm=1[1 0..0]=c, . (100)

Clearly, from eqns. 9 and 10, a necessary and sufficient
condition for the realisability of a specified /(n, k) by a system
of the form of Sy is the nonsingularity of C,(n). Furthermore,
if one applies the observability criterion of Reference 7 to the
basic realisation, one finds that C,(n) is an observability
matrix of it. Hence, if C,(n) is nonsingular, any realisation
of order m of h(n, k) is totally m-observable.}

Use of a controllability criterion” for the basic realisation
yields the controllability matrix

Lo(ny,m) = [gn), gln+1), ...,gn+m=0D1 . . (11}
and hence S, is not necessarily totally m-controllable.t

Transmission-matrix properties: The class of systems which
are totally m-controllable and totally m-observable is now
considered. Such systems can be transformed to the form
of So by an equivalence transformation of the form

Tmy=C.(mX~'(ny . . . . . . . . (12

where X(n) is the fundamental matrix of the given system S,
and thus X~'(n) transforms it to the basic realisation,
whereas C,(n) transforms the basic realisation to S,. Clearly,
total m-observability is necessary and sufficient for the
existence of a nonsingular T(n) (assuming A(n), and hence
X(n), to be nonsingular).

Theorem 1: Let H be the transmission matrix of a system
S, of order m, which is totally m-controllable_and totally
m-observable. Then, each mxm submatrix H,(n, k*) of
H, as in eqn. 13 below, is a fundamental matrix of S, at
instant 7.

h(n, k*)
hn+1, k%)

{;(n,k"”rl)
Ho(n, k*) = hin+1, k:“+1)
hn+m—1, k*) hn+m—=1,k*+1) ...

where k* is an integer satisfying 0 < k* <(n—m+1), i.e.
H,(n, k*) is an mxm submatrix of H below the main
diagonal,

Proof: Since h(n, k) is necessarily of the form of eqn. 8, it is
noted that

H,(n, k*) = C.(mgk*®), gk*+1), ..., glk*+m—1] (14)
and hence from eqn. 11
H,(n, k*) = Cu(n) Te(k*, m) N 5))

* Herz, a matrix X(n) is called a fundamental matrix of eqn. 4 if it satisfies®
X(r+1) = A(m) X(n). This matrixis not unique since X(n) K, where K is a constant
nonsingular matrix, is also a fundamental matrix of eqn. 4. For the particular
case where K = X~1(ng), the unique matrix d(», ny) = X(n) X~ '(ny) (known also
as a ‘transition martrix') satisfies Mg, ny) = [

+ That is, transforming the state vector by a linear transformation z(w) = T(n) X(n),
where T(n) is a nonsingular matrix

I A system is said here to be totally m-observable if it is completely observable”
on each subsequence [n,, ..., n3] such that ny—n, = m, a fixed integer. It is
sajd to be totally m-controllable it it is completely controllable? on each
subseguence as above
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By hypothesis, I'.(k, n1) is nonsingular for all &, and hence
for k = k* it is a constant nonsingular matrix. Thus, since
C.(n) is a fundamental matrix of So, sois H,.(n, k*).  Q.E.D.

Corollary 1: Every mxm determinant below the main
diagonal of the transmission matrix H of § is nonzero.

From eqns. 9 and 15, and the property that a linear
combination of the m linearly independent solutions of
L(m) y(n) = 0 is also a solution, we obtain

_Corollary 2: Every column below the main diagonal of
H is a solution of the homogeneous equation L (n) y(1) = 0,
where L(n) is the difference operator of the input—output
representation of Sy.

Corollary 3:_ All m adjacent columns below the main
diagonal of H are linearly independent solutions of
L(n) y(n) = 0.

Corollary 4: Every ux u determinant below the main
diagonal of H, for which x > m, vanishes.

From the above results one could, theoretically, determine
the order of a system from its transmission matrix if it is
totally m-controllable and totally m-observable. In practice,
however, because of finite accuracy in calculations and
measurement errors (if H is found by measurements), ux u
determinants for # > m will not necessarily vanish. Yet, if one
assumes a certain order m, one can obtain a representation of
the form of eqn. 6 from the given H by applying Theorem 1
and using H,,(n, k) in eqns. 10 in place of C,(n). Note that,
from eqn. 105, b;(n) is given directly by the ith diagonal
below the main one.

The matrix inversion required in eqn. 10a can be avoided
by evaluating the determinant of eqn. 16 below and by using
the relation between egns. 5a and 7a.

y(ny Ph(n, k*) .. h(n, k*+m—1)
1 y(n+1) s

L(n) y(n) = AT

: ; H,(n+1, k*)
y(n+m):

(16)
where 0 < k* < (n—m+1) and A'* = |H,(n+1, k).

Note that eqn. 16 does satisfy (theoretically) L(x) fi(n) = 0,
i=1,2,..., m, as required.

Conclusions: 1t has been shown that proper submatrices of
the transmission matrix of a system which is totally m-
controllable and totally m-observable are fundamental
matrices of the canonical representation given by eqns. 4 and
5. Other related theoretical properties are found as well.
The results apply to both time-varying and time-invariant
systems and can be utilised in the design or identification of
discrete-time systems.
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hn+m—1, k*+m—1)
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