'SYNTHESIS OF LINEAR DISCRETE-
TIME-VARYING SYSTEMS

Indexing terms: Discrete-time systems, Lincar systems. Step
response, Control-system synthesis

The synthesis of a linear discrete-time-varying system from its
specified impulse-response matrix H(n, k) is considered. The
results include a direct extension of those obtained tor the
continuous-time counterpart problem, and a simple decom-
position method of H(n, k) which is readily extendable to the
continuous-time case.

Tutroduction : A notable advantage of replacing a continuous-
time-varying system by a discrete equivalent one is the sim-
plicity with which the latter can be realised, because the time-
varying propertics are obtained just by varving the multi-
plying coeflicients with time. If the impulse-response matrix
H (1, 7) of the linear continuous-time-varying system (l.c.t.v.s.)
Lo be discretised is initially specified, it is of advantage to usc
a direct discretisation approach, ie. to derive H{n, k) from
H1, t) and synthetise the discrete equivalent system from it.
rather than synthetise first H(t, t) and then discretise the state
cquations,  Here, the synthesis of a linear discrete-time-
varyving system  (Ld.tv.s)) from a specified H(n, k) is con-
sidered,

Svsteni synthesis from a specified Hin, k): The problem of
synthetising an Le.tves, from its specified impulse-response
matris H (e, 1) has been treated extensively in the literature,' - ¢
I'he extension to the discrete-time case of some of the buasic
results, such as realisability conditions, equivalence trans-
formations and reduced realisations,' =3 is straightforward,
and will be stated without proof.
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Let S be an Ld.twv.s. which is described by the stale
equations

x(n+1) = An) x(n)+ B(n) u(n) |

y(n) = C(n) x(n) J £

where x(n) is an m-dimensional state vector, mu(s#) an r-
dimensional input vector and y(n) a p-dimensional output
vector. A(n); B(n) and C(n) are matrices of proper dimen-
sions and # is the discrete time variable (an integer).

The triplet {A(n), B(n), C(n)} is said to be a ‘realisation’
ol S.

As in Reference 1, one obtains for the discrete-time case:

Theorem I: A necessary and sufficient condition for the
realisability of an impulse-response matrix H(n, k) by a

system S of the form given by eqgns. | is the existence of

finite-dimensional matrices F(n) and G(k) such that

Hn, k) = F(n) G(k)

np<k<n. . . . (2

Corollary I: Every H(n, k) in the form of eqn. 2 is realised by
U, G(n), F(n)}. We call {I, G(n), F(n)} a basic realisation.

Fig. 1 Crosscoupled realisation of a p x r impulse-response
matrix H(n, k) = [h,, (n, k)]

Remark: Equivalently, a basic realisation of H(t, 1) =
P(1) Q(7) is given by {0, Q(1), P(1)!.

A linear transformation of the state vector x(n) of S to a
new state vector z(n) = T (n) x(n), where T(n) is an mx m
nonsingular matrix, results in an equivalent system S;. The
coefficient matrices of S are found. on substitution, to be

Ar(m) =T+ DAWT "y . . . . | Q)

Bi(n)=T(n+1)B(n Crn) =CmyT-"(m) (3h)

and it is easily verified that H;(n, k) = H(n, k). Thus S and
S+ are equivalent with respect to their impulse response (i,
they are algebraically equivalent).!
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By applying equivalence transformations to the basic
realisation, infinitely many realisations can be generated.
Furthermore, from Corollary 1 and egn. 3a, we obtain

Theorem 2: A system of order m with an impulse-response
matrix H(n, k) = F(n) G(k), where F(n) and G(k) are px m
and mxr matrices, respectively, can be realised in the form
of eqn. 1 with any desired m > m nonsingular matrix A(n),
by applying to the basic realisation (I, G(n), F(n); an equiv-
alence transformation T(n) = X(m), where X(n) is a funda-
mental matrix corresponding to A(n) [ie. X(ntl) =
A(ny X (n)].

Definition 1: A decomposition F(n) Gik) of H(n, k) is said
to be of order m if the number of columns in F(n)
[= number of rows in G(k)] is equal to m; or, equivalently,
il the corresponding basic realisation is of order m.

Definition 2: A decomposition F(n) Gik), its corresponding
basic realisation and the equivalent realisations generated
from it are said to be globally reduced® * if the columns of
F(n) are linearly independent for ne(n,, =), and so are the
rows of G(n).

Theorem 3: Every realisable H(n, k) possesses a globally
reduced realisation,

The proof to this theorem is as given in References 2 and 3
for the continuous-time case. Furthermore, the constructive
nature of the proof yields a general method for reducing any
given decomposition to a globally reduced one.

The course to be followed for synthetising a specified
Hn, k) = F(n) G(k) is now clear. First, reduce the
decomposition to a globally reduced one, then apply an
equivalence transformation T(n) to the basic realisation to
obtain, according to eqn. 3, other realisations.

[t is of interest to note that, for the scalar case, the use of
the Casorati matrix® as an equivalence transformation trans-
forms the basic realisation to a canonical form [A1(n) being
the companion matrix].”

u(n)o—

[ gn) e E

Fig. 2 Basic realisation of h(n, k) - f'(n)g(k)

Decomposition of the impulse-response matrix: In the above
synthesis procedure, it is assumed that H(n, k) is in a
decomposed form. A problem arises, however, if H(n, k)
is not given in such a form. It is possible to extend to the
discrete case known decomposition methods which were
obtained for l.c.t.v.s.,* ® but, since they are rather compli-
cated, a simple decomposition method is proposed below.
Actually, the proposed method is also readily applicable to
the continuous-time case and does not require derivatives of
the elements of H(:, t), which are required by the known
methods.

The proposed decomposition method is based on initially
realising the pxr impulse-response matrix  Hn, k) =
[Ais(n, k)] by the cross-coupled realisation shown in Fig. 1,
and realising each scalar subsystem, having an impulse-
response function® hy;(nk) = [f(m]" g"(k), by the basic
realisation {1, g"tn), [ f"(n)]"} of order m,; (minimal) shown
in Fig. 2. The above corresponds to the realisation of

* Lithe followang, the superseript T denotes 1 ispose
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H(n, k) by the basic realisation T G0 Foon! of order

b
my = 3, 2 m,,
i=1j-1

|
|
where ‘

position method of the impulse-response matrix which js
applicable to both discrete and continuous-time systems ijs
proposed. A direct discretisation approach can be imple-
mented by deriving a specification for H(n, k), e.g. by using
the approach of response equivalence® with respect to a

certain desired input, and then applying the above results.
'fu" fIII f‘lu __T
Foty = 4)
Golk) = f) 0 ......................... 0 (5)
| 0 Olscorsnamimr immem viemvimmii oo Om_igl"‘ . ylrl -..wa N
and Fo(n) and Golk) are p x m, and m, X r matrices, respec- . MALAH 23rd November 1971

tively. Fo(n) Go(k) is therefore an initial decomposition of
order my and can be written down from H(n, k) by inspection.
Furthermore, owing to the special form of the matrices
Fo(n) and Ggo(k), which permits the identification of linearly
dependent columns in Fy(n) and linearly dependent rows in
Go(k) with almost no effort, a partial reduction in the order
of the decomposition is easily obtained. This is done by
discarding dependent rows in Go(k) [or columns in Fy(n)]
so that the product of the resulting matrices remains
H(n, k). The final reduction (if necessary) to a globally
reduced decomposition can be obtained by applying the
procedure given in References 2 and 3.

Decomposition example: The following impulse-fesponsc
matrix H(n, k) is prescribed:

1 nk+n? k? 2nk + n?lk ()
Wk | 2nk+n? k2+nk?®  4nk+ntlk+nlk

An initial decomposition is found by inspection (according to
eqns. 4 and 5) to be

Hn k) =

1 [nn2 0 002¢00*0 0 0
Fo(’U:;J_[O 0 2nn2n 0 0 4n n? "] "
kk*k k> k20 00 0 0"
Go(k):lﬂoo 0 0 k 1k k 1/k l/k] @

Starting with Go(k), discarding in it proper rows and com-
bining accordingly columns in Fo(n), we obtain the decom-
position

2

1 2 2
Hon k) = FL) Gi(k) = == [”2 n i ]

n* n*+n 4n n*+n
k k* 0 0 T

x 9
00 k ljk

Since dependent columns in F(n) are also now easily identi-
fied, we proceed as above to obtain

Hm k) = Fotn) Galk)

1 |n i
ot kd {20 w*4n

A

which is only of order 2 and, in this case, also globally
reduced, so that no further operations are necessary.

Conclusions: The fundamental results necessary for the
synthesis of a lincur discrete-time-varying system from a
specified impulse-response matrix have been extended from
known results for continuous-time systems. A simple decom-
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