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Design of Uniform DFT Filter Banks Optimized for
Subband Coding of Speech

AHARON SATT, STUDENT MEMBER, IEEE, AND DAVID MALAH, FELLOW, IEEE

Abstract—A new approach for designing uniform DFT analysis/syn-
thesis filter banks, optimized for subband coding (SBC) of speech, is
presented. A spectral-domain distortion ¢, which ¢ ts of a
weighted sum of error terms due to filtering, rate conversions, and
quantization, is derived. The quantization is embedded by means of a
statistical model. For the case of ‘‘fine’” quantization, a simpler, de-
terministic, distortion function is derived. The design of the optimal
filters is performed by an iterative algorithm, in which two sets of lin-
ear equations are solved in each iteration, aiming at minimizing the
distortion function. A 16 kbit/s SBC is simulated, using a filter bank
designed by the new approach, and is found to achieve similar subjec-
tive and objective (SNR) performance as that of a conventional QMF-
based SBC, with only about half the computations.

I. INTRODUCTION

UBBAND coding is a well-known method for digital

speech coding at medium rates (e.g., 16 kbit/s). In a
subband coder (SBC), the signal is divided into separate
bands (typically eight) by using an analysis filter bank.
Usually, each band signal is quantized by a gain-adaptive
scalar quantizer. The speech is reconstructed from the
quantized band signals using a synthesis filter bank. A
coder of this type is considered to be of ‘‘medium com-
plexity,”” with its most complex part being the filter bank
f].

Two common types of filter banks are the Quadrature
Mirror Filter (QMF) bank [2] and the uniform DFT filter
bank [2]. The QMF bank is designed to completely cancel
the aliasing due to the decimation of the band signals (in
the absence of quantization), and it is widely used in sub-
band speech coders. The QMF-based SBC obtains good
quality at medium bit rates. Its drawback, however, is its
relatively high implementation complexity.

On the other hand, the DFT bank can be implemented
efficiently using FIR filters and the Weighted Overlap Add
(WOLA) scheme [2], in which case it is of much lower
complexity than the QMF bank, for similar band separa-
tion. However, because known design techniques aim at
minimizing the overall response error of the filter bank,
using either deterministic [12] or statistical [3] error mea-
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sure, the performance of the DFT-based SBC (in terms of
subjective quality) was found to be much lower.

In this work we present a new approach for designing
filters for uniform DFT filter banks. A spectral-domain
distortion function, which consists of a weighted sum of
Euclidean norms of the various error terms in the output
signal, is derived. The optimal filters are obtained by as-
signing an appropriate weight to each term, and minimiz-
ing the distortion function. The error terms are as follows:
a) aliasing distortion and the error relative to unity trans-
mission, b) output quantization noise, c) sidelobe (stop-
band) energy of the analysis filter. A more detailed dis-
cussion of these error terms follows.

a) The frequency bands are required to be well sepa-
rated (as explained in the sequel). Thus, the length (L)
of the analysis (FIR) filter impulse-response must be
longer than the number of bands (M ). If L > M and the
subband signals are decimated by the critical ratio (R =
M), the uniform DFT filter bank with FIR analysis/syn-
thesis filters cannot realize an exact unity system (i.e., the
overall analysis/synthesis transfer function—in the ab-
sence of quantization—is not a pure delay) [2]. The alias-
ing may be cancelled in the output signal, by using syn-
thesis filters which have long duration [11], but this leads
to an inefficient implementation. If a lower decimation
ratio is applied (R < M), a unity system is achievable.
However, the filter response is not simply controlled (in
particular, the stop-band attenuation). Hence, in practice,
aliasing cancellation and unity transmission are only ap-
proximated.

b) The quantization error is modeled as additive noise.
Two terms of the noise in the output signal are consid-
ered: the term (n 1) of noise components which are con-
tained in the frequency bands at which they were pro-
duced; the term (#n2) of noise leakage from one frequency
band to other bands due to nonzero frequency response of
the synthesis filter in the stop-band. The quantization
noise in each frequency band is ‘‘masked’’ by a stronger
band signal in the same band, i.e., reducing the loudness
at which the noise is perceived (the auditory masking ef-
fect [3]). It is important to minimize the leakage of quan-
tization noise from one frequency band to other bands,
including adjacent bands if their bandwidth is not narrow
[3], since its masking in other bands cannot be controlled
as it depends on signal intensity in those bands.

c) It is required to have good band separation in the
analysis stage, since redundancy removal is enhanced by
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providing uncorrelated band signals. This allows the de-
sign of quantizers which are better matched to the nonsta-
tionary properties of the band signals (in particular, ad-
aptation to the gain in each band). The band separation is
controlled by introducing a stop-band energy term (to be
defined later) into the distortion function.

The paper is organized as follows. Section II presents
the distortion function to be minimized, and a discussion
on the quantization noise effect on the optimal filters; Sec-
tion IIT presents the iterative algorithm used; Section IV
presents a design example; Section V presents the imple-
mentation of a 16 kbit/s SBC using the optimized filter
banks; and Section VI presents simulation results with the
new SBC system and, for comparison, also with a con-
ventional QMF-based SBC.

II. DisTorTION FuNcCTION

In this section, first, a statistical distortion criterion is
developed, and then, for the case of ‘“fine’’ quantization,
a deterministic distortion function is derived.

The basic structure of a (complex) uniform DFT filter
bank, with decimation and interpolation, is shown in Fig.
1. In the analysis stage, the input signal x(n) is demod-
ulated by exp ( —jw,n), filtered by the FIR analysis low-
pass filter 1(n), and R: 1 decimated to produce the M band
signals X, (m), k =0, 1, , M — 1. Ideally, these M
complex signals have a bandwidth of 27 /M. In the syn-
thesis stage, the band signals are interpolated by the syn-
thesis low-pass filters f(n), modulated by exp ( jwcn),
and summed up to produce the output signal £(n).

Using well-known z-transform relations for decimated
and interpolated signals, the z-transform of the output sig-
nal is given by
| Rl | Mo
= EO X(zWy) m EO F(zWy) HzWhWy)

X(z)

+ {terms which are dependent on the

quantization noise}

>

w, & ej27r/M Wi A eIk (1)

The terms which include X(zW%), for k # 0, are the
aliasing components in the output signal. Hence, we de-
fine the aliasing distortion as

]R‘ll T
Ll
M k=127 J-x

“H(eWiWi)

>

Eal

R 1? Fe ij;/)

2

dw. (2)

The mean squared error (MSE) relative to unity transmis-
sion, i.e., pure delay of n, samples, is given by

M-

1
1 ,
— 21 F(elwy/
MR 2 W)
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E é—S
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H(eP W)

—Jjwno _

2
dw. (3)
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Fig. 1. Basic structure of the uniform DFT filter bank.

The quantization process is modeled by an additive
wide-sense stationary noise, uncorrelated with the speech
signal, and assumed to have zero mean. This model is
adequate for medium and high bit-rate SBC (e.g., 16
kbit /s and above), where most of the frequency bands are
allocated at least 2-3 bits. Because of the interpolation
process, the output quantization noise is not wide-sense
stationary. However, its power spectrum is periodic in
time with a period R (the interpolation ratio). An average
power spectrum is defined by averaging the (time-depen-
dent) power spectrum over one period. An expression for
the average spectrum is derived in Appendix A, and is
given by

-1

Sou(e?®) = Mz Z Sule™ Wi®) |[F(e*Wil) |
where S,,(e’“) is the power spectral dénsity of the noise
source in the /th (complex) band. The power of the quan-
tization noise components contained in their original fre-
quencies, normalized by the input signal power o2, is
M-t

Al 1

1 2el/M+7 /M
"I M S0 2n S

2xl/M—x/M

. . 2
F Su(e Wi [F(e*Wi)| dw (5)
and the normalized power of the leakage noise compo-
nents is
M

A

1 1 1 el /M+x/M M-
EnZ = _2 2_ S Z

1
M 2al/M—=x/m k=0
k+1

Sule’F W) | F(e*wy)|" dw.  (6)

Both output noise power terms, E,; and E,,, are nor-
malized by the input signal power rather than the output
signal power, to simplify the design equations, assuming
approximately unity transmission.

The ideal frequency response of the analysis filter is

_ M, 0<|o|l<a/M
ideal(ejw) = 7
0, /M < ’w‘ <

where the gain factor M compensates for the division of
the output signal by M (see Fig. 1). The sidelobe (stop-
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band) energy is defined as
1 (" . A
E, & — S Un(e’) |H(e™) [ do
27 -
0, 0<|w|l<a/M
1, w/M<|o| <

The first distortion function we introduce is given by the
following weighted sum:

D = WalEa[ + Etr + wn]Enl + WnZEnZ + whEh

I

Un(e’) (8)

(9)
where the weight factors w,;, wy, wy,|, w,, are nonnegative
constants. D may be used for designing the optimal filters,
in which case it is required to estimate the autocorrelation
sequence of the noise signal in each band. In the partic-
ular case of equal weights: w,; = w, = w,; = w,, = 1,
the distortion function D is similar to a particular case of
the time-domain error measure in [4, eqns. 30, B3] (when
the input signal is white and the weight function in [4, eq.
B3] is constant).

Next, we concentrate on the case of “‘fine’” quantiza-
tion, and derive a simpler, deterministic measure. Con-
sider the case in which the number of quantization levels
allocated to each nonzero-energy band is not too low (e.g.,
eight levels and above), hence, the quantization noise
characteristics are similar to white noise. Let 57 (a con-
stant) denote the power spectrum density of the quanti-
zation noise in the /th (complex) band. Expression (5) is
therefore reduced to

11 1 ("M 2 Mol

" gWﬂ S—W/M |F(elw)| do - 1§o mi- (1)
Note that the output signal-to-noise ratio with respect to
the noise term n1 is not affected by the synthesis filter,
since by attenuating the frequency response F(e’“) both
the output signal and the output noise levels are reduced.
Hence, the term E,, can be omitted from (9).

If optimal bit allocation is applied, the noise power is

the same in each band, i.e.,n? =%, 1=0, -+ - , M —
1 [1]. E,, in (6) is then reduced to
111 B N 7’
- — jw L
En ol M 2w Sﬂr lF(e )I de o

(11)
Thus, E,, is proportional to the sidelobe energy of the
synthesis filter. Hence, we can replace E,, in (9) by a
sidelobe energy term, defined below.

To define the sidelobe energy, we consider the follow-
ing ideal frequency response of the synthesis filter, as
shown in Fig. 2:

wgl—(x/M).7/M}

R 0<|w|<7/M
0, 27k/R— /M < |o|
< 27k/R + n/M
o, 2w(k - 1)/R + o /M
< |w| < 27k/R — n/M
k=1,2,---,R/2. (12)

Fldeal(ejw) =
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Fig. 2. Frequency responses of the ideal filters.

Fiseal is an ideal interpolation filter (cf. [2]), and in the
absence of quantization, the regions denoted by ¢ are
‘‘don’t care’’ regions. In an SBC, the ¢ regions corre-
sponding to k = 2, - - - , R/2 must be zero (ideally), in
order to prevent the leakage of quantization noise. Thus,
the sidelobe energy of the synthesis filter is defined here
by
&L S Uy (e7)| F(e?)|} de
f 27 -7 f

Uy (el®) & {

Defining Eyas in (13), rather than extending the stop-band
definition as in (8), results in a lower distortion filter bank
(when R < M). The distortion function (9) is now re-
placed by

0, 0<|w|<2r/R~7/M

(13)
1, 2x/R-—a/M< lw‘ < 7.

D = alEal + E,,. + WhEh + WfEf

(14)

where wy is a nonnegative constant.

III. ITERATIVE ALGORITHM FOR OPTIMAL FILTER BANK
DESIGN

Using Parseval’s equality D can be represented as a
positive-semidefinite (PSD) quadratic form, in terms of
the analysis and synthesis filter coefficients:

D =1-2f"q + fTOf + terms which are
independent of f
1 —2h"g + h"Qh + terms which are

independent of h (15)

where h and f are vectors with elements obtained from
consecutive terms of 4(n) and f(n), respectively. The
derivation of (15) and the expressions for the PSD matri-
ces @, @ and the vectors g, § are given in Appendix B.

When the analysis filter #(n) is given, the synthesis
filter f (n) is computed by minimizing D, and vice versa.
Minimization of the corresponding PSD quadratic forms
in (15) with respect to f(n) or h(n) gives the following
linear equations for solving for the optimal filters, respec-
tively:

Qfopl =q Qhopl =q. (16)

Assuming w;, > 0 and wy > 0 [since we wish to limit the
frequency response in the stop-band, both for A(n) and
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f(n)], and following the derivation in Appendix B, we
conclude that Q and @ are PD matrices, yielding therefore
unique solutions to (16).

If the given FIR filter is symmetric (i.e., linear phase),
the corresponding computed filter from (16) is also sym-
metric. In this case, as shown in Appendix B, the dimen-
sion of the equation set can be reduced from L X L to
(L/2) x (L/2) where L is the length of the computed
filter.

The combined design of a pair of optimal analysis and
synthesis filters is performed by an iterative algorithm,
similar to [4], which converges to a local minimum of D,
as follows.

a) Initialization: Letf(o’ be an initial synthesis filter, €

> 0 a threshold constant, k = 1, D'¥ = .

b) Given f*~1 compute k) from (16): Qh“" = 4.

¢) Given BV, computef % from (16): Qf % =
d) Compute the distortion D using (15). If (D‘A o
D*) /D™ < ¢, then go to step e. Otherwise, k <
k + 1, and return to step b.

e) Normalize and f'® (as explained in the sequel).
Stop.

By increasing the weights w,;, wj, w; in the distortion
function defined in (14), the amplitude of the windows
obtained by minimizing D decreases. In order to restore
the amplitude of the synthesized signal, without affecting
the output SNR, f(n) is scaled by a factor ¢y, which min-
imizes the MSE relative to unity transmission:

a1 {7
E”(C) = E; S_W

- H(e/*Wy')

e—jwno .

M-
fod .
— 4 F(e)*Wy
MR EB (e Wir)

2
dw

e =arg {min E,(0)}: &« ¢ f®. (17)
<

An expression for the factor ¢, in terms of the filter coef-

ficients, is given in (B13).

The iterative algorithm consists of computing the anal-
ysis and synthesis filters alternatively, minimizing the
same (positive) distortion function. Hence, D is monoton-
ically decreasing from iteration to iteration, and the al-
gorithm converges to a local minimum of D, which de-
pends on the initial filter chosen.

IV. DEsiGN ExXAMPLE

In this section, we present a filter design example for a
subband coder with M = 16 complex-bands.

To achieve maximum coding efficiency, it is desirable
to decimate the band signals by the critical ratio R = M.
However, the designed filters for the critical ratio were
not found to achieve both a low distortion filter bank
(when no coding is applied) and sufficiently high stop-
band attenuation, unless they are of very long duration.
Decreasing slightly the decimation ratio, using R = (M
— 1) = 15, enables the design of filters which results in
high performance SBC, but still of quite lower complexity
than a conventional QMF coder of similar performance.

The impulse and frequency responses of the optimal fil-
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ters, with M = 16 bands, decimation ratio R = 15, and
length of 256 taps each, are shown in Fig. 3. The weight
factors were chosen to be w,; = 10, w, = 10, wy = 20,
and the resulting filters provide good band separation and
a high performance SBC. The ‘‘transfer-function’’ of the
system in the above example (obtained from (1) by ex-
cluding the aliasing components) is given by

M-
T(w) & Z H(e*Wy!) F(el*W;/) (18)
and is plotted in Fig. 4.

The initial filter f ) was obtained in the following way.
First, a symmetric low-pass filter with cutoff frequency
/M is designed via any conventional method. This low-
pass filter is then used as an initial analysis filter for de-
signing a synthesis filter having high attenuation in the
stop-band by using the iterative algorithm with w,, = 1,
wy = wy = 1000. The resulting synthesis filter is then
used as an initial filter for the final design process. The
design process can, of course, begin with an initial anal-
ysis filter h‘?, using a similar procedure to find it.

V. SBC IMPLEMENTATION

The proposed SBC consists of the above analysis and
synthesis filter banks and adaptive scalar quantizers with
dynamic bit allocation.

The filter banks are implemented efficiently, using the
WOLA scheme [2]. The complex modulations following
the DFT in the analysis stage, and prior to the IDFT in
the synthesis stage [2, Fig. 7.19, 7.20] may be omitted.
The resulting phase modification of the quantization noise
has no effect on the synthesized speech quality. The DFT
is performed by the Decimation-In-Time FFT algorithm
[5]. This algorithm, when used for transforming real se-
quences, has many redundancies. The FFT of a real se-
quence of length 16 requires only 12 real multiplies, 62
real adds, and the storage of only 3 constants (cos /4,
cos m /8, sin cos w/8) [6]. Similarly, the IDFT is per-
formed by the Decimation-In-Frequency FFT algorithm
[6].

The M complex signals are uniquely represented by the
following M real signals:

Yo(m) = Xo(m), Yy_\(m) = Xu/2(m),
Yo-1(m) = Re X (m),
Yo (m) = Im X, (m),
k=12, ,M/2 - 1. (19)

The real signals Y; (m), i = 0, , M — 1 quantized
independently, using forward gain-adaptive quantizers
[1]. Gain adaptation in the ith band is based on the esti-
mated and quantized variance &7 of the signal Y; (m),
which is updated every N = 16 samples of Y; (m) and
transmitted as side information. The corresponding N
samples of Y; (m) are quantized by a uniform quantizer
[1} and optimized for a zero-mean Gaussian PDF with
variance §7.
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Fig. 3. Impulse and frequency responses of the optimal filters.

Fig. 4. The system’s *‘transfer function™ | T(w)].

Based on the estimated variances 47, the bit allocation

is computed to minimize the MSE:

!

A 2 - 2
=E[Yy - Yol + E[Yy_, — V)]

M-1
EL;O | X, — X,

M-2
26| 3 (- 0] (20)
where X and ¥ are the quantized versions of X and Y. The
double weight of the errorsin ¥;, i =1, - -+ M —2,1is
accounted for by multiplying the estimated variances o2,
i=1,+-+, M- 2, by 2 before computing the alloca-
tion. A procedure for bit allocation is given in [7] (after
correcting some typographical errors). The allocation is
also updated every N = 16 samples of each of Y, (m), i
=0,1,---, M- 1.

The computation rate required for implementing the
analysis filter bank is as follows: L multiplies, L — M
adds, and an FFT of length M for the analysis stage for
producing M complex samples [2, Fig. 7.19], where L is
the filter length. The same number of operations is re-
quired for the synthesis stage [2]. For a decimation ratio
of R = 15, the implementation of both the analysis and
synthesis filter banks requires 36 multiplies and 40 adds
per input sample.

VI. SIMULATION RESULTS AND DISCUSSION

An SBC which utilizes the above optimized filters, and
an SBC which is based on an 8-band QMF bank, were
simulated for a transmission rate of 16 kbits /s. The im-
plementation of the QMF bank requires 96 multiplies and
102 adds per input sample (using 32-tap filters in a tree
structure). The DFT-based coder and the QMF-based
coder were found to have similar subjective performance.
Both coders yield high quality synthesized speech, de-
graded only by very slight hoarseness. The objective per-
formance of the QMF-based coder is slightly higher: SNR
= 19.8 dB, as compared to 18.9 dB for the DFT-based
coder. An attempt to reduce the QMF bank complexity to
48 multiplies per input sample, using shorter filters,
caused noticeable degradation in the synthesized speech
quality.

Another filter bank structure is the generalized parallel
QMF bank [8]-[10], which can be implemented more ef-
ficiently than a tree-structured QMF. Still, the DFT-based
SBC is expected to be more efficient. The example given
in [8] is that of a filter bank having 8 real bands, which
requires about 75 percent of the number of multiplies and
150 percent of the additions (using 40 tap filters) as com-
pared to the above uniform DFT filter bank. The filter
bank described in [9] splits the signal into 16 bands and
requires 42 multiplies and 82 adds per input sample. In
both of the above examples, quite short duration filters
are used (40 taps and 80 taps, respectively), and the tran-
sition-band region of the filter in each band extends up to
the center of adjacent bands. Since in the presence of
quantization the power of the noise leaking to adjacent
bands is proportional to the width of the transition band,
subjective performance similar to the above DFT-based
SBC could be expected only if longer duration filters are
used, as done in [10].
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VII. SUMMARY

A new approach for designing FIR filters for uniform
DFT filter banks, optimized for subband coding of speech,
is presented. The optimal filters are designed by an iter-
ative algorithm, aiming at minimizing a spectral-domain
distortion function.

The distortion function takes into account both the error
due to the filtering and rate conversions and the error due
to quantization. Another approach for defining the distor-
tion function, in which the quantization effect is also ac-
counted for, was presented in [4]. In contrast to {4], the
above frequency-domain distortion function enables us to
separate between the error components and apply a dif-
ferent weight to each one of them, thereby allowing en-
hancement of the subjective quality of the SBC. In sim-
ulations, the leakage noise was found to be a main factor
in the quality degradation of the synthesized speech.

Examining the effect of the quantization error on the
filter design, we arrive at the conclusion that in medium-
to-high rate SBC, minimizing the quantization effect (ac-
tually the leakage noise) by optimal filter design is ap-
proximately equivalent to attenuating the stop-band mag-
nitude response of the synthesis filter. The above
conclusion, however, need not be true for low-rate SBC
(e.g., 9.6 kbits /s and below), as the additive white noise
model for the quantization process is no longer valid. The
latter case is considered in [4].

A 16 kbit/s SBC which utilizes the optimized filters
was simulated, and was found to achieve similar subjec-
tive performance as that of a QMF-based SBC, but ef-
fecting more than 60 percent reduction in computations
required for the filter bank implementation, as compared
to the QMF bank.

APPENDIX A
AVERAGE POWER SPECTRUM OF THE QUTPUT NOISE

The quantization process is modeled here as additive
(complex) noise, which is wide-sense stationary. The pro-
cessing done to the noise in the /th band is shown in Fig.
5. The noise source power spectrum density is denoted by
Su(e?), 1 =0, -+, M— 1, and its autocorrelation by
¢; (k). We define

. A le(n/R), nmodR =0

7(n) = .
0, otherwise
¢ (k/R), kmodR =0

di(k) £ { . (A1)
0, otherwise.

Uy (n) is the interpolated noise signal prior to the filtering
by f(n). The (time-dependent) power spectrum in the
output noise of the /th band is

Sa(n, e’y = S{E[y(n) i (n + k)]}
:§22f(n—s)f(n+k—t)

CWEWTIE By (s) 07 (1)] ek
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{m)
- iZM
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WM W,

Fig. 5. Processing of the quantization noise in the /th band.

= 2 f(k) Wy'e /" 2 ¢ (iR)
. W]t_'lere_jMR Zf(n — SR)

. Wﬁln—xk)ejw(n—SR) (AZ)
where § denotes the Fourier transform operator.

From (A2), the power spectrum is clearly periodic in
time, with a period n = R. Defining an average power
spectrum as a sum over one period, we obtain

R-1
Z S\,,(n, €jw)
n=0 -

2 )
|[F(e™ W) [ 5. (e"FWi).  (A3)

We proceed by making the following two assumptions.

a) The noise sources in each pair of bands, which are
not complex conjugates, are uncorrelated.

b) The real and the imaginary components of each noise
source are uncorrelated, and their autocorrelation se-
quences are identical.

These two assumptions are approximately satisfied even
by the speech band-signals, as verified by simulations. In
the DFT filter bank, the noise sources vy, vy, are real,
and

>

3')‘1(ejm)

k=1,2,---,M/2-1. (A4)

Based on assumption b, it is easily verified that the power
spectrum of the sum of the output noise terms y, (n) +
Yu-1(n)is

. . 2
Su(e™FWE) | F(elowl)|

+ Sy (/T WM IR [Fe/ oWy M)

_ Lk
Uy = Upy—is

|2

(AS)
and following assumption a, the power spectrum of the
output noise is given by the sum of the band components

as in (4), where the factor l/M2 is due to the division of
the output signal by M (see Fig. 1).

APPENDIX B
DEeRIVATION OF THE DESIGN EQUATIONS
A. Aliasing Distortion
From (2), using Parseval’s equality,
1 R-1

Ea = M*R? kgl %:

M-1

% { f(n) Wit}

=0

2
« {h(n) Wywg*}

(B1)

where * denotes ‘‘convolution.”’
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Using the identity

M-1 M-1
2 Wi = 2 /™M = M§(nmod M)
k=0 k=0
M, n=20
= (B2)
0, n#0

the following expression for E, is obtained:
Ey = Z 2 2f(s) h(n = s) h(n = 1) f(1)

. [R6 (s = t) mod R) — 1] 8(n mod M).
(B3)

For simplicity, we choose the filters 2(n) and f (n) to be
of equal length L, where L is an integer multiple of the
transform size M. Equation (B3) can then be rearranged
in either of the following two PSD quadratic forms:

E, = fTQa[f = hTQth
F=1[£(0), (1),
h = [Rr(1), h(2),

JL -1
(L))"

Qu(s, 1) = % %:h(nM ~ s)h(nM — 1)
- [R8((s — 1) mod R) — 1],

0 <s, t<L -1
0u (5. 1) = 23 ZF(nM = 5) f(nb ~ 1)

- [R8((s — 1) mod R) — 1],

l<ss, 1t=<L (B4)

where @, and @, are matrices of dimension L X L. Since
E, = 0, both symmetric matrices are PSD.

B. MSE Relative to Unity Transmission

If h(n) and f (n) are linear phase filters [both of length
L, as defined in (B4)], the delay of the analysis-synthesis
system is ny = L samples. Using Parseval’s equality and
the identity (B2), we get from (3)

M-1

é(n—no)—— 2

EIr
MR =0

{f(n) Wi}

2

* {n(n) Wi}

I

1 - 123 ;f(s) h(ny — 5) 8(ny mod M)

+ é 2 % T f(s) hnM ~ S) h(nb ~ 1) (1)

(BS)
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where n, = L. Rearranging (B5) in a quadratic form

E,=1- 2qu +fTerf= 1 - Zth + hTQtrh
g = (ML), k(L= 1), h(D)
g=gFL -1, fL-2), - f(0)]

Q. (s, 1) = kl—z Z h(nM — s) h(nM — 1),

0=y, =L-1

0uls, 1) = 2 ZF(nM = 5) (bt — 1),

l<s, t<L.

(B6)

The symmetric matrices @, and @, are PSD due to the
following equality:

M-1
Z F(e*Wy)

ks

1

T, T
ro.r=won=- | LS

-7

- H(e’® W;,’)‘ dw = 0.

(B7)
C. Sidelobe Energy
From (8) and (13), using Parseval’s equality,
E,=h'Quh;  E =fQf
0.(s, 1) = u,(s — 1); 1 <s,t=<L;
up(n) = §° { }
Q(s,)=wu(s—1); O0=st=<L-1
up(n) = fr'{uf(ef“’)} (B8)

where &' denotes the inverse Fourier transform. Since
h(n) and f(n) are FIR filters, E,, E; > 0, so both sym-
metric matrices @, and @ are PD. Combining (14), (B4),
(B6), and (B8) we get (15), where Q and Q are given by

Q = ulQal + Q!r + waf
Q = alQaI + Qtr + Wthr

D. Case of Symmetric Filters

(B9)

If the given filter is symmetric, i.e., h(t) = h(L + 1
-t),t=1, - ,L,orf(t)=f(Lj 1—1),t=0,
, L — 1, then the matrices @ and Q in (B9) satisfy

O(,1)=Q(L—-1—-s,L—-1-1),

s, t=20,1, ,L -1
O(s,t) =0(L+1—-s,L+1-1),
s, 0=1,2, -+ L. (B10)
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Following (B10), we conclude that the computed filter ob-
tained via (16) is also symmetric. Equation (16) can there-
fore be reduced to compute half the filter coefficients:

Pf

p:Ph’ =p

P(s,t) = Q(s,1) + Q(s, L — 1 — 1),
s,t=0,--',L/2—1
P(s,1) = Q(s,1) + O(s, L + 1 — 1),
s,t=1,--+,L/2
B = [h(1), h(2), -+, h(L/2)] ;
£= £, £, - f /2 = D)
p=14(0), q(1), -+, q(L/2 - D]";

pla(),a(2), -+ a/2)]". (1)
E. Expression for ¢y (17)

Using Parseval’s equality and (B2), E, (c) can be ex-
pressed as

E,(c)=1-2cfTq + c*f70,f (B12)
Minimizing E,, (¢) results in
= (f0.f)/(f9). (B13)
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