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The purpose of this paper is to extend to the discrete-time case techniques for order
reduction and equivalence transformation to canonical forms of time-varying systems.

The extension is based on particular controllability and observability matrices
which are completely analogous, with respect to their transformational properties, to
their continuous-time counterparts.

1. Introduction

The digital simulation of a continuous-time system requires its discretiza-
tion, which in general amounts to the derivation of a set of difference equations
from the differential equations describing the system. Discretization methods,
however, do not necessarily preserve canonical forms or even the order of the
original system [e.g. if high-order difference schemes are used (Kelly 1967)].
The discretization procedure is satisfactorily completed only if the discretized
system is of the lowest possible order (reduced) and preferably in a canonical
form. For linear continuous-time-varying systems (l.c.t.v.s.) the problem of
system reduction has been solved (Stubberud 1963, Silverman and Meadows
1965 a, b, Glass and 1’Angelo 1967, Albertson and Womack 1968) by utilizing
transformational properties of particular controllability and observability
matrices which are expressed in a recursive form in terms of the coefficient
matrices of the system (Stubberud 1964, Silverman and Meadows 1965 b, 1967,
Chang 1965). The same matrices [and a modified one (Chao and Liu 1971)]
have also been utilized in deriving equivalence transformations to particular
canonical forms (Silverman and Meadows 1965 a, Silverman 1966, Ramaswami
and Ramar 1969). Some of the above results are extended in the sequel to the
discrete-time case by utilizing proper controllability and observability matrices
which are shown to have analogous transformational properties to their
continuous-time counterparts.

2. Algebraic criteria for controllability and observability

The linear discrete-time-varying system (1.d.t.v.s.) S under consideration is
described by
S: x{(n+1)=An)x(n)+ B(n)u(n), (1)
y(n) = C(n)x(n), (2)
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where the state x(n) is an m-vector, the input u(n) an r-vector, and the output
y(n) a p-vector. A(n), B(n) and C(n) are matrices of proper dimensions, and
n is the discrete time variable (an integer).

2.1. Controllability

The system S is said to be completely controllable if any initial state can be
transferred to any other state in a finite time. It is said to be totally control-
lable if the desired state can be attained from any initial state in ¢ time instants,
where ¢ is any fixed integer. § is then also said to be totally g-controllable.

Repeated application of (1) yields

x(n+g)—An+q-1An+q-2) ... An)x(n)
=An+q—~1)A(n+qg—2) ... A(n+1)B(n)u(n)
+An+q9-1) ... An+2)B(n+lun+1)

+ ... +B(n+g—1Nu(n+g—1), (3)
and hence the system § is completely controllable if and only if there exists an
integer g, for every n, such that the matrix @ (n, g) defined below (controllability
matrix) has rank m :

Q(n, ) £[B(n), A (n+1)B(n +1),
s AT m+1)A Y n+2) ... A {n+qg—-1)B(rn+g—1)]. (4)
Alternatively, one obtains from eqn. (3) the modified controllability matrix
Q. *(n, ) £[A(n+g—1) ... A(n+1)B(n),
s Aln+g—1)B(n+q-2), B(n+g—-1)].  (5)

A system S which is completely controllable is also totally controllable
(totally g-controllable) if the above rank condition for the controllability
matrices is satisfied with some fixed integer g. '

Note that for time-invariant systems @ *(n, ¢) yields the well-known result
[A<1B, ..., AB, B].

It is convenient to express @ (n, ¢) and @ *(n, g) in the following recursive
forms :

Qc(n> q) 4 [Po(n)’ Pl(n)’ e Pq—l(n)]’ }
where (6)
Po(r)=B(n); P;;(n)=A"(n+1)Pin+1),
and
Q. *(n, q) £ [Py*(n), Py*(n), ..., P *(n)], }
where (7)

Pia*(n)=B(n+g—-1); P*n)=An+g-1)P,,*(n-1).

2.2. Observability

The system 8§ is said to be completely observable if the state x(z) can be
determined, for every n, from knowledge of the input u(n) and the output y(n)
over a finite time sequence [n, n+g]. It is said to be totally observable if the
integer ¢ above is fixed for all n. S is then also said to be totally g-observable.
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By applying the dual system concept (Sarachik and Kreindler 1965) the
observability matrices below are obtained.
The dual to Q_(n, q) of (6) is

Qy(n, q) £[Sy(n), Sy(n), ..., S,4(n)],
where (8)
Sp(n)=CTn+1); S, (n)=ATn+1)S;(n+1)

and where the superscript T denotes ‘ transpose °.
Similarly, the dual to @ *(n, q) of (7) is

Qc*(n7 Q) = [SO*(n)7 Sl*((n), LEES) Sq—l*(n)]’ }
(9)
+1*(7’L— ])

Sy *(n)=CT(n+q); S;*(n)=[AT(n+q—1)]7S,

1

where

For the special case of time-invariant systems @g(n, ¢) yields the well-
known result [CT, ATCT, . . . (AT)?-1CT].

3. [Egquivalent systems

Definition 1. A system Sy is said to be equivalent to the system S of (1)
if its state vector x(n) is obtained from x(n) by xp(n)=T(n)x(n), where T(n)
is an m x m non-singular matrix, said to be the equivalence transformation which
transforms § to Sr.

Let {Ap(n), Byp(n), Cy(n)} be the coefficient matrices of Sp.  Then, substi-
tution of xp(n)=T(n)x(n) in eqn. (1) yields

Ar(n)=Tn+1)AM)T(n); Bp(n)=Tn+1)B(n); Cpn)=Cn)T(n). (10)

The relation between fundamental matrices of equivalent systems is then
found to be ®(n, k)=T(n)®(n, k)T-1(n), from which it is easily verified that
the impulse response matrices of equivalent systems are identical. The above
equivalence is therefore with respect to the input—output properties (algebraic
equivalence).

The transformational properties of the controllability and observability
matrices presented in the previous section can now be examined.

Let Q. p(n, q) and Qgp(n, ¢) denote the controllability and observability
matrices, respectively, of 8;. Then, by substitution of eqn. (10) into eqns.
(6) and (8) and applying induction, one obtains the relations

QCT(nJ Q) :T(n + I)Qc(n’ Q),
(11)
Qyr(n, ¢)=[TT(n+1)]7 Qq(n, g).
Similarly, substitution of eqn. (10) into eqns. (7) and (9) yields
QCT*(n’ Q)=T(n+q)ae*(n: 9), }
(12)
Qur*(n, ¢)=[TT(n +9)]7 Qy*(n, q).

It is also noted, from eqn. (11), that
QOTT(n: q)QcT(n7 Q) = QOT(n: Q)Qc(n: q) (13)

e
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A similar result to (13) holds for the modified matrices Q. *(n, q) and
Q,*(n, ¢). From eqn. (13) the matrix ¥(n, q) £ Q,"(n, ¢) @ (n, q) is clearly
invariant under equivalence transformations. ¥(n, q) can therefore be used
for checking if given systems are equivalent.

The above transformational properties are completely analogous to those
obtained for the continuous-time counterparts (Silverman and Meadows
1965 a, 1966). The importance of this analogy is in the ability of readily
extending, to the discrete-time case, results on system reduction and equiva-
lence transformations to canonical forms. Other known matrices
(Grammaticos 1969) do not have such a complete analogy in transformational
properties, and cannot be applied, readily, to the above problems.

4. Application to system reduction

The extension to the discrete-time case of reduction techniques will be
limited here to the problem considered by Silverman and Meadows (1965 a)—
systems reduction ‘ from the input ’.  Yet, other results (e.g. those of Silverman
and Meadows 1966, and D’Angelo 1970) can be extended in the same way.

Definition 2. System (1) is reducible from the input to order u,<m and to
no lower order if there exists an equivalence transformation z(n)=T(n)x(n)
such that

z,(n+1)] [Bum) B,m)][z0)] [Bin) 1
S: zn+1)= ]= ] }+ } u(n)

Zy(n+1) 0 Azz(") Zy(n) 0

j (14)
y(r)=y1(n) +ys(n) = [€,(n)€,(n)]z(n)
and the pth-order subsystem 8, below is totally controllable :

Sl Do(n+1)= A11("1')11(77') + El(n)"(")’ }
Yi(n)= é1(’”')21('”)-

The reduction procedure constitutes here the determination of T (n) which
transforms S of (1) to S of (14), from which S,—the reduced system—is readily
identified. ' .

The controllability matrix @,(n, g) corresponding to S is found by using
eqns. (6) and (14). Since eqn. (6) involves A—1(n) the matrix inversion identity
given in Appendix 1 is applied. The result is that the last m—u, rows of

(15)

Q (n, q) are zero. The above and (11) yield

(16)

écl(n’ Q)
0

éc(nx q) =Tc(n +1) Qc(n» q)= [

in which écl(n, q) has p, rows.

A similar result is obtained (without requiring a matrix inversion) by using
Q_ *(n, q) of (7). The following theorem provides a condition under which an
equivalence transformation T.(n) which satisfies (16) reduces the system.

Theorem 1. If an equivalence transformation T.(n) exists such that (16)
is satisfied, and @, (n, g) has rank p, for all n and all ¢ > ¢, where g, is a fixed

-
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integer (g, > m/r), then system S is reducible to a pu th-order totally controllable
subsystem (totally ¢.-controllable).

This theorem is an extension of a similar one obtained by Silverman and
Meadows (1965 a) for l.c.t.v.s. and the proof, given in Appendix 2, is a modifica-
tion of it to this case.

Finally, an explicit formulation for the reduction of a class of systems is
given by the following theorem :

Theorem 2. 1If @Q(n, q) has rank p,<m for all n and all ¢>q,, where ¢,
is a fixed integer (q.=m/r), and a submatrix of @(n, ¢) also has rank y,, for
the above conditions, then the system S is not controllable and can be reduced
to a totally controllable (totally g -controllable) subsystem of order u., by
applying the equivalence transformation T (n) given by (17) below :

L. 0
T.(n+1)= { ],

- ch(n’ QC)QCI#(TL: Q() I (17)

g
where
ch#= QCIT(QOIchT)_l _J

is a generalized inverse (Penrose 1955, Greville 1959) of @, and the rows of
Q_(n, ¢) have been reordered so that

(18)

ch(n’ Q)
Qc(n’ Q) =

ch(n’ Q)

The proof of the above theorem is by construction and is completely
identical to the one given for l.c.t.v.s. (Silverman and Meadows 1965 a) and
hence is omitted. If one uses @, *(n, ¢) instead of @ (n, ¢) a similar expression
to (17) is obtained, but with T (n+q) on the left-hand side.

Example. A system L is described by

-a, 0 a"
L: x(n+1)= [ x(n)+ [ u(n), (19)
0 —aq

where @, and a, are non-zero and unequal constants.
Applying eqn. (6), one obtains

ot —a (=1)Tay"
Qc(n, Q) = s

a,”  —ay" (= 1)z lg,"

(20)

and since rank Q@ (n,q)=1, for all » and all ¢>m/r=2, the system is not
controllable.

To apply Theorem 2 we use @ (n, 2), for which : p,=1; Q,=[a,", —a"],
Q,=[a,", —a,*] and Q" =[(a,/2)", (—a,/2)"]T. Hence, by eqn. (17),

1 0
Tc(n+l)=[ ] . (21)

—(agfa)™ 1
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The ceefficient matrices of the equivalent system (of form (14)) are now
found, by applying eqn. (21) to eqn. (10), to be

—a; 0 a"
A=A= . Bm)= ) (22)
0 —(ty 0

and hence the reduced system (first order) is described by

En+ 1) = —a8(n) + a,"u(n). (23) -

5. Application to system transformation

The relations obtained in eqns. (11) and (12) provide the means for an
explicit determination of the equivalence transformation which relates two
equivalent systems § and S;. Thus, if two totally g.-controllable systems S
and S are equivalent, the equivalence transformation which relates them is
obtained from eqn. (11) as

Tn+1)= Q. (n, ¢.) Q.5 (n, qc) (24)
similarly, if two totally g,-observable systems S and Sy are equivalent we obtain
T(n+1)={[Qyr(n, 9) Qo"(n, 7o) }" (25)

Use of eqn. (12) yields similar results in terms of the modified matrices.

For some particular canonical forms the controllability or observability
matrice can be found explicitly even if the coefficient matrices are not known
explicitly. In such cases the equivalence transformation of a given system to
the particular canonical form can be determined by use of eqn. (24) or (25), as
shown in the two cases below, which for simplicity consider scalar systems
(single input-single output).

A widely used canonical form for scalar systems is

0 1 0.0 by(n) A
Sy: zZn+1l)=| 0 0 1...0 z(n)+ | by(n) | u(n),
: : \ (26)
() op(n)...... o) b, (n)
y(n)=[1 0... 0]z(n).

-

Substitution of the coefficient matrices of S, above into eqn. (8) yields the
following form for Qgr(n, q) :

QOT("’: ‘1) = [Im Q] ;o g=zm, (27)

where @ has ¢—m columns and I, is the m x m identity matrix.

Clearly, rank Qgp(n, ¢)=m, for all m and any ¢q>m, which means that
system §, is totally m-observable. Any other system S can, therefore, be
equivalent to S, only if it is totally m-observable.
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If a system § is known to be equivalent to S, then the relating equivalence
transformation is found from eqns. (25) and (27) (with g=m) to be

T(n+1)={[@y"(n, m)] )T = @,T(n, m), (28)

which is explicitly given in terms of the coefficient matrices of S. Furthermore,
as proved in Appendix 3,

Theorem 3. A necessary and sufficient condition that system S of (1), with
r=p=1, be equivalent to S, of (20) is that S be totally m-observable. Ifit is
s0, the equivalence transformation is given by eqn. (28).

It is of interest to note that for the continuous-time case (Silverman and
Meadows 1965 a) the necessary and sufficient condition in the counterpart to
Theorem 3 is uniform observability. Thus, for discrete as well as for continuous-
time-systems the above conditions are stronger than total observability.

Another useful canonical form is given by

an)y 1 0..0 0 h
0
8ot vt 1)=| ™0 LD vy o] L)
: 1 r (29)
a,m)y 0 0 0 1
y(n) =[cy(n)cy(n) ... ¢ (n)]v(n). )

In this case, if we consider the modified controllability matrix @ *(n, q)
of eqn. (7), we find for system §, of (29) that

Qc’l‘*(n! Q) = [ImE Q*] ;o g=zm. (30)
Clearly, 8, is totally m-controllable. The following theorem can now be stated

Theorem 4. A necessary and sufficient condition that system S of (1), with
r=p=1, be equivalent to system S, of (29) is that § be totally m-controllable.
If it is so, the equivalence transformation is given by

T(n+m)=[Q*(n, m)]™". (31)

The proof to this theorem follows exactly the one given for Theorem 3 and
therefore is omitted. Equation (31) is obtained from eqns. (12) and (30) (with
g=m). Inthe continuous-time counterpart to Theorem 4 it is required that the
system be uniformly controllable (Chao and Liu 1971). Thus, for both types of
system, continuous and discrete the above necessary and sufficient conditions
are stronger than total controllability.

6. Conclusions

The complete analogy in transformational properties between @ (n,q)
and @,(n, ¢) and their continuous-time counterparts enabled the extension to
the discrete-time case of results on system reduction and equivalence trans-
formation. The extension of other results, such as further treatment of reduc-
tion techniques (Glass and D’Angelo 1967, Silverman 1966 and Silverman and
Meadows 1966), system stabilization (Wolovich 1968), construction of inverse
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systems (Silverman 1968, 1969) and other applications (Milo and Policastro
1970), may now be attempted in & similar way.

It has been shown constructively that a necessary and sufficient condition
for the existence of an equivalence transformation which transforms a scalar
system S, of order m, to the canonical form (26) or (29) is that S be totally
m-observable or totally m-controllable, respectively. These results point to
the analogy between uniform controllability and uniform observability for
continuous-time systems and total m-controllability and total m-observability,
respectively, for discrete-time systems.

Appendix 1
A matrix inversion identity
Consider the partitioned matrix

E F
V=[ , (Al 1)
G H

where E and H are assumed to be square non-singular matrices. The inverse
of V is then given by (Fortmann 1970)

E!+E-'FL-1GE-! —E-1FL-!
V-i= (Al 2)
— L-—lG E—l L—l

in which L-1= H—- GE-1F.

Appendix 2
Proof of theorem 1
Let the coefficient matrices of the transformed system S be [A(n), B(n), €(n)]

and write
N An Am . [E
A(n)= : B(n)= . (A21)
a ~ Bz

Ay Ay
Then, according to Definition 2 and eqn. (14), S will be reduced from the
input ’ if Ay, =0 and B,=0.
By hypothesis and by eqn. (6)
Q. (n, 9) = [Qy"(n, ), 0717 = [Py(n), ..., Pya(m)],
and
Po(n)= [’BlT’ B,T1".
Hence By(n)=0.
To show A, (n)=0, define @,'(n, q) as
Qc’(n’ Q) & [Pl(n)’ PZ(”)} cet Pq('ﬂ)] (A2 2)
Comparison of eqns. (6) and (A2 2) shows ’
Q'(n, ¢)=A"(n+1)Q(n+1,q) (A2 3)
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or
Q. (n+1,9)=An+1)Q.(n, q). (A2 4)

Clearly, for ¢ > ¢., rank @ '(n, ¢) =rank Q (n, q)=p,.

Furthermore, since rank @Qg(n,g+1)=rank @Q.(n,¢q), for ¢>gq. and
Q. (n, ¢+1)=[Q,(n, q), P,(n)], the columns of P (n) are linear combinations
of the columns of @ _(n, q). Hence for S :

pq(,ﬂ/) = [pq1T> oT]Ta
and therefore
éc’(n’ q)= [chTi OT]T'

Using eqns. (A2 1) and (A2 4) we obtain

Q. (n+1,9) A11(774 +1) Apn+1) écll
0 Ay(n+1) Agyn+1) 0

implying Aj;(n+1) @' (n, ¢)=0.
Since for g > g, rank écl(n, q)=rank @ (n, ¢)=p,,
for all n, we have A, (n)=0. Q.E.D.

Appendix 3
Proof of theorem 3
Necessity is clear from the discussion preceding the theorem.
To prove sufficiency one has to show that if system S of (1) (with r=p=1)
is totally m-observable there exists a T(n) which transforms S to §, of (26).
By hypothesis @g(n, m) is non-singular for all » and we may let

T(n+1)= Q,T(n, m).
Applying eqn. (11)

Qyp(n, m)=[TT(n+1)]7 Qqy(n, m)=1, (A3 1)
and we have now to show that Qgq(n, m) of (A3 1) corresponds uniquely to
Ar(n) of eqn. (26).

Defining Q,'(n, ¢) £[S,(n), S4(n), ..., S,,(n)] and comparing with eqn. (8)
we obtain

Q) (n, ¢)=AT(n+1)Qyn+1, q). (A32)

Applying eqns. (A3 1) and (A3 2) for determining Ar(n) it is found to be
uniquely determined by

ArT(n+1)= @uy’(n, m) = [Syz(n), ..., Sr(m)]: (A3 3)
Since [S¢r(n), ..., Sp_a(r)]=1,, and by eqn. (11} S,,¢o(n)=[TT(n+1)]71S,,(n),
we obtain from eqn. (A3 3)
0 0...0 oy(n+1)
ATn+1)=|1 0..0 omn+1)], (A3 4)

0 0..1 ayn+1)




1136 Reduction and transformation of linear discrete-time-varying systems

where
[oy(m+ 1), an(n+1), ..., x,(n+1)] =S, r(n)

=[THn+1)]71S,,(n) = @y~ (n, m)S,,(n).
Q.E.D.
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