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Anomaly Preserving ��� -Optimal Dimensionality
Reduction Over a Grassmann Manifold

Oleg Kuybeda, David Malah, Life Fellow, IEEE, and Meir Barzohar

Abstract—In this paper, we address the problem of redundancy
reduction of high-dimensional noisy signals that may contain
anomaly (rare) vectors, which we wish to preserve. Since anomaly
data vectors contribute weakly to the �-norm of the signal as
compared to the noise, �-based criteria are unsatisfactory for
obtaining a good representation of these vectors. As a remedy,
a new approach, named Min-Max-SVD (MX-SVD) was recently
proposed for signal-subspace estimation by attempting to mini-
mize the maximum of data-residual �-norms, denoted as �

and designed to represent well both abundant and anomaly
measurements. However, the MX-SVD algorithm is greedy and
only approximately minimizes the proposed � -norm of the
residuals. In this paper we develop an optimal algorithm for the
minization of the � -norm of data misrepresentation residuals,
which we call Maximum Orthogonal complements Optimal Sub-
space Estimation (MOOSE). The optimization is performed via
a natural conjugate gradient learning approach carried out on
the set of dimensional subspaces in �� , , which is a
Grassmann manifold. The results of applying MOOSE, MX-SVD,
and �– based approaches are demonstrated both on simulated
and real hyperspectral data.

Index Terms—Anomaly detection, dimensionality reduction,
Grassmann manifold, hyperspectral images, hyperspectral signal
identification by minimum error (HySime), maximum orthog-
onal-complements analysis (MOCA), Min-Max-SVD (MX-SVD),
redundancy reduction, signal-subspace rank, singular value de-
composition (SVD).

I. INTRODUCTION

D IMENSIONALITY reduction plays a key role in high-di-
mensional data analysis. In many sensor-array applica-

tions, meaningful signal structure belongs to a low-dimensional
signal subspace embedded in the high-dimensional space of the
observed data vectors. There are many reasons that make di-
mensionality reduction of the observed data vectors crucial. For
instance, dimensionality reduction allows improving SNR by
eliminating dimensions that do not carry valuable signal infor-
mation, but may contain noise that compromises the application
performance; In applications such as anomaly detection and/or
classification there is a problem related to high dimensional
spaces due to so called Hughes phenomenon [1], according to
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which the performance of anomaly detection/classification al-
gorithms significantly deteriorates when the number of training
samples is severely limited for an accurate learning of the cor-
responding signal models; Dimensionality reduction allows re-
ducing computational costs, as well as storage volumes. Nu-
merous existing methods aim to estimate a low-dimensional
signal subspace that adequately reflects the meaningful signal
structure. In this paper, we focus on applications that analyze
data containing anomaly vectors in which the estimated signal
subspace should contain (preserve) anomaly vectors. The con-
sidered applications may require the estimated signal subspace
to be of a rank that is much lower than the observed dimension-
ality, and may be even lower than the physically meaningful
signal structure. Such applications may be anomaly detection
or classification, where Hughes phenomenon poses a serious
problem for working in high-dimensional space, and in which
the critical anomaly-related information should be retained even
at the expense of the background information. Another example
may be compression-related applications that may have similar
background-anomaly related tradeoffs.

The commonly assumed observation model satisfies

(1)

where is the observed vector, is the data-ac-
quisition or/and model noise; , and is a
full-rank matrix with rank , ( ). An example of applica-
tion employing this model is anomaly detection in hyperspectral
images. Here, the columns of are the pure materials spectra
(end members) and their corresponding abundances [21].1

A number of approaches have been proposed in the liter-
ature (e.g., [17]–[19]) for signal-subspace estimation under
the assumption that and are independent, stationary,
zero-mean and Gaussian. It was shown in [2] that for white
noise , the classical principal components analysis (PCA)
method for signal subspace estimation is optimal in the max-
imum-likelihood (ML) sense. It determines the signal subspace
by minimizing the -norm of misrepresentation residuals
belonging to the complementary subspace, which can be ob-
tained via singular value decomposition (SVD) of , which is
a matrix of observed data vectors ordered as its columns.
The authors of [15], propose a new -based approach, named
as HySime, designed to determine both the signal subspace and

1Due to physical reasons, �� � are constrained to be nonnegative. However,
for the dimensionality reduction that merely deals with the determination of the
column space of� and not with the exact determination of � and/or �� �, the
constraints on �� � may be omitted and the pure signal vectors may be regarded
as just a set of vectors lying in the column space of � without any relevance to
�� �.
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its rank in hyperspectral imagery. The method first estimates
the signal and noise covariance matrices. Then, they use the
assumption on the nonnegativity of in order to estimate
the signal subspace rank by finding the subset of eigenvalues
that best represents, in the -sense, the mean value of the data
set. The signal subspace is obtained by applying SVD on the
noise-reduced covariance matrix of the data. Unfortunately, as
we show in [3], the -based criterion is unsatisfactory for ob-
taining a reliable representation of the anomaly (rare) vectors,
which typically contribute weakly to the -norm of the signal
as compared to the noise. Nevertheless, the proper representa-
tion of rare vectors may be of high importance in denoising and
dimensionality reduction applications that aim to preserve all
the signal-related information, including rare vectors, within
the estimated low-dimensional signal subspace. For example,
in a problem of redundancy reduction in hyperspectral images,
rare end members that are present in just a few data pixels
contribute weakly to the -norm of the signal. Therefore, their
contribution to the signal subspace cannot be reliably estimated
using an -based criterion. As a remedy, we propose in [3] a
novel approach, named Maximum Orthogonal-Complements
Algorithm (MOCA), which employs a so-called norm
for both signal subspace and rank determination, designed
to represent well both abundant and rare measurements, irre-
spective of their frequentness in the data. Mathematically, the

-norm of a matrix is defined as follows:

(2)

where denote columns of . In words: means the
maximum of -norms of columns.

When -norm is applied to the misrepresentation resid-
uals, it penalizes individual data-vector misrepresentations,
which helps to represent well not only abundant-vectors, but
also rare-vectors. In [4] we show that the -norm can
be efficiently used for the detection of anomalies as well.
However, the algorithm developed in [3] for signal-subspace
estimation, named Min-Max-SVD (MX-SVD), is greedy and
only approximately minimizes the proposed -norm of
misrepresentation residuals. In this paper we propose a new
algorithm that utilizes a natural conjugate gradient learning
approach proposed in [5] to minimize the -norm of the
misrepresentation residuals, where the signal-subspace basis
matrix is constrained to the Grassmann manifold defined as the
set of all dimensional subspaces in , [5]. Since
the -norm of the misrepresentation residuals can be also
referenced as the maximum orthogonal complement norm, we
denote the proposed approach as Maximum of Orthogonal
complements Optimal Subspace Estimation (MOOSE).

This paper is organized as follows: In Section II we pro-
vide a brief overview of MX-SVD, the greedy algorithm for
signal-subspace determination, proposed in [3]. In Section III
we develop the proposed MOOSE algorithm. The results of ap-
plying MOOSE, SVD, and MX-SVD are demonstrated on sim-
ulated data (Section IV). The results of applying MOOSE, SVD,
MX-SVD and HySime are demonstrated on real hyperspectral
data (Section V). Finally, in Section VI, we conclude this work.

II. OVERVIEW OF MX-SVD

In this section we provide a short overview of MX-SVD,
the greedy algorithm for signal-subspace determination, pro-
posed in [3], designed to estimate an anomaly-preserving signal
subspace. Ideally, according to [3], given the estimated signal-
subspace rank, , the anomaly-preserving signal subspace
should satisfy

(3)

where denotes an orthogonal projection onto . The
greedy technique for the minimization of (3), used in [3], is to
constrain the sought basis to be of the following form:

(4)

where is a matrix composed of columns selected from
, and is a matrix with orthogonal columns, ob-

tained via SVD of . The main idea of MX-SVD is to col-
lect anomaly vectors into in order to directly represent the
anomaly vectors subspace. Since anomaly vectors are not neces-
sarily orthogonal to background vectors, the matrix also par-
tially represents background vectors. The residual background
vector contribution to the null-space of is represented by
principal vectors found by applying SVD on .

The determination of the basis vectors of in terms of
is performed as follows: First, we initialize ,

such that

(5)

where are principal left singular vectors of .
Then, a series of matrices is constructed

such that

(6)

(7)

where, for each , is the index of a data vector
that has the maximal residual squared norm :

(8)

(9)

and are principal left singular vec-
tors of . Thus, the columns of , for each

, span -dimensional subspaces, respectively. Each
subspace is spanned by a number of data vectors collected in
the matrix and by SVD-based vectors that best represent (in

sense) the data residuals in the null-space of . Moreover,
each subspace is characterized by its maximum-norm misrepre-
sentation residual . The greedy signal-subspace estimation
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Fig. 1. MX-SVD flowchart. For a given signal subspace rank value
�, constructs a signal-subspace basis of the form �� � ���� ���� �,
� � ��	
�
� ��� ��, which approximately minimizes �� �� , where

��� is responsible for representing anomaly-vectors and, partially, background
vectors; ��� complements ��� to represent background vectors in the
� -sense.

is selected as in (4), with

(10)

This policy combines the -based minimization of back-
ground vector-residual norms with -based minimization
of anomaly vector residual norms, which produces a greedy
estimate that approximately satisfies (3). A flowchart sum-
marizing the MX-SVD process is shown in Fig. 1.

III. MINIMIZING -NORM ON THE GRASSMANN MANIFOLD

A. Problem Formulation

Generally, the problem stated in (3) can be recast as

(11)

where the objective function is defines as

(12)

and is an equivalence class of all orthogonal
matrices whose columns span the same subspace in as .
Here represents the orthogonal complement subspace to
the sought signal subspace . The set of all -dimensional
subspaces in , denoted by , is called the Grassmann
manifold [5]. The geometrical structure of the Grassmann mani-
fold allows a continuous choice of subspaces, which is essential
for constructing a local minimization procedure. Without loss
of generality, by necessity, we must pick a representative of the
equivalence class , say , in order to be able to work with

on the computer. Thus, by smoothly changing , such
that we would be able to continuously move
from one subspace to another and iteratively improve the objec-
tive function in a manner similar to well known unconstrained
gradient-based algorithms such as steepest descent and conju-
gate gradient [23].

B. Grassmann Manifold Geometry

As stated in [5], the benefits of using gradient-based algo-
rithms for the unconstrained minimization of an objective func-
tion can be carried over to a minimization constrained to the
Grassmann manifold. The familiar operations employed by un-
constrained minimization in the Euclidean space (plain space)
such as computing gradients, performing line searches, etc., can
be translated into their covariant versions on the Grassmann
manifold (curved space).

In the following we briefly outline basic results from [5] used
in this work for calculating gradients of an objective function
and performing a line search along a search direction on the
Grassmann manifold. Then, we develop a technique for mini-
mizing of (12).

1) Gradient on Grassmann: The gradient of the objective
function on the Grassmann manifold is defined to be
a matrix , where is the tangent space at ,
such that for all , the following holds:

(13)

where is the matrix of partial derivatives of
with respect to the elements of ; denotes the standard
inner product in – dimensional Euclidean space
defined as

(14)

In words, the relation in (13) states that the gradient of
on the Grassmann manifold is the projection of onto .
Since is the set of subspaces spanned by the columns of
matrices of the form

(15)

where are arbitrary matrices and is a orthog-
onal matrix satisfying

(16)

one obtains

(17)
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A more rigorous treatment of these intuitive concepts is given
in [5], where a solid foundation framework for the optimization
algorithms involving orthogonality constraints is developed.

2) Line Search: The line search in the Grassmann man-
ifold is defined to be the minimization of along a
geodesic, which is the curve of shortest length between two
points in a manifold. By noticing that the geodesic equation is
a second-order ODE, it follows from the local existence and
uniqueness theorem that for any point in a manifold and for
any vector in the tangent space at , there exists a unique
geodesic curve passing through in the direction [6]. This
observation makes the generalization of local optimization
methods straightforward: given a descent direction
(for example, ), the objective function
is minimized by the line search along the geodesic passing
through in the direction . An easy to compute formula
for geodesics on the Grassmann manifold proposed in [5] reads
as

(18)

where is a geodesic curve traversing parameter and is
the compact singular value decomposition (SVD) of . Com-
pact SVD here means that the zero singular values are discarded
along with the respective columns in and , and the singular
values are set in a decreasing order in . It can be easily verified
that the diagonal elements of the matrix traverse Principal an-
gles [10] between the column spaces and . Thus, for

, one obtains the original subspace that is rotated by
the angles when increases. Moreover, the geodesic distance
between and on the Grassmann manifold denoted
by satisfies [5]

(19)

It should be noted that for large values, the distance
is not the shortest one between and

, since for large , may complete one or more
full circles in terms of the angles on the diagonal of . How-
ever, it is still true that locally, for small increments,
is the shortest path on the Grassmann manifold connecting
points on it. Moreover, the relation (19) implies that the rotation
velocity, when one traverses the geodesic by changing

, equals to and, therefore, may change from iteration
to iteration. In order to make it constant during the line search,
for all iterations, the matrix is normalized:

(20)

Now, the line search is performed by looking for that cor-
responds to a “significant reduction” of the objective function
along a geodesic . The notion of “a significant reduction”
means that, on one hand, should be low enough to ensure re-
duction of the objective function value; on the other hand, the
search step should be large enough for fast algorithm conver-
gence. For this purpose, we use the Backtracking-Armijo line-
search method [23], [24] summarized in Algorithm 1.

Algorithm 1: Backtracking-Armijo Line Search

Given a geodesic in a descending direction ,
, ,

Backtracking:
while ,
Armijo:
while and

,

In words, if the value of is too large, it is iteratively de-
creased by dividing it by in the Backtracking “while” stage,
until the following condition holds:

(21)

Since is a descent direction and , we have ,
so for small enough , the following holds:

(22)

which shows that the Backtracking “while” expression eventu-
ally terminates and that is small enough to cause a decrease of
the objective function value.

If the value of is too small, it is iteratively increased by mul-
tiplying it by in the Armijo “while” stage, until the condition
(21) is concurrently satisfied with

(23)

In words, is increased until it reaches a point in which it is still
small enough to satisfy condition (21), but already large enough
so that it is no longer satisfied in the next iteration, i.e., when
replaces [see (23)].

C. Minimization of on the Grassmann Manifold

In this subsection, we develop a technique for solving (11) for
of (12) on the Grassman manifold. A natural choice for

the search direction is the negative gradient [7]. The
calculation of involves the calculation of [see (17)]. For
the calculation of we consider here two cases: One case is
when the maximum is obtained for only one data vector, while
the other case is when the maximum is obtained for more than
one data vector.

1) Case 1: If the maximum is obtained for only one vector
at each throughout the minimization, the calculation of
becomes straightforward:

(24)

where is the vector for which is obtained.
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2) Case 2: If the maximum is obtained for a set of indexes
that contains more than one index, then the gradient direction

is given by solving the following problem:

(25)

with being defined in (14). In words, it is a unit-norm ma-
trix that maximizes the minimal projection norm onto gradients
obtained individually for each , (as in (24)). If the
problem (25) is feasible, then the direction is guaranteed to
be a descent direction for all maximal residual norms ,

, since all projections are constrained to be positive. More-
over, it is the steepest descent direction of the objective function

, because the descent rate of is determined by
the lowest descent rate of the maximal residual norm ,
for some , which is maximized (see the problem for-
mulation in (25)). If the problem is infeasible, then is a
local minimum of the objective function , since there
is no search direction that concurrently minimizes all maximal
residual norms. The problem (25) can be efficiently solved by
second-order cone programming (SOCP) [23]. The norm of the
derivative matrix is given by

(26)

i.e., it equals to the lowest descent rate of the maximal residual
norms, or equivalently, to the descent rate of in the
direction .

Practically, we have observed that in real data distributions
the maximum is obtained for only one vector with probability
close to one. Therefore, using (24) is good enough (practically)
for obtaining a steep descent direction as we did in our simula-
tions.

However, minimizing along the geodesic given by
, may slow down the algorithm convergence due to an al-

ternation of the competing maximum-norm data vectors from it-
eration to iteration. This phenomenon is also notoriously known
as the zig-zag pattern pertaining to steepest descent methods [7].
In order to better cope with the complex nature of the cost func-
tion , we propose to use the conjugate gradient method.
According to this method, the conjugate search direction is a
combination of the previous search direction and the new gra-
dient

(27)

where denotes the iteration index, is the parallel transla-
tion of the previous search direction from the point to

by removing its normal component to the tangent space
, as schematically shown in Fig. 2; and is obtained via

Polak Ribiére conjugacy condition formula [5]

(28)

Fig. 2. Parallel transport on Grassman manifold.

where is the parallel translation of obtained in the
same way as . The parallel translation is needed in order to
keep all directions within the tangent space at each iteration. The
formula for obtaining and is [5]

(29)

The conjugate gradient construction offers a good com-
promise between convergence speed and computational
complexity [9]. If the objective function is nondegenerate (lo-
cally quadratic), then the algorithm is guaranteed to converge
quadratically in the Euclidean space [12]. The authors of [5]
also show that in the Grassmann manifold, conjugate gradient
algorithms also yield a quadratic convergence, i.e., for a mani-
fold of dimension , one has to perform a sequence of steps
to get to a distance within from the solution. However,
in our problem it is not guaranteed that the -based cost
function is locally quadratic. Therefore, there is no guarantee
that the conjugate gradient descent procedure converges in
iterations. Fortunately, we have empirically found that the con-
jugate gradient descent method still significantly outperforms
the gradient descent method in our problem. It is a common fact
that conjugate gradient methods empirically still significantly
outperform gradient descent methods even for nonconvex
problems. In our case, a possible explanation to this may be as
follows: The contribution of the previous search direction in
each iteration, also helps the procedure to employ information
that is carried in maximal norms obtained earlier (for possibly
different data vectors), i.e., using the conjugate gradient di-
rection helps to simultaneously minimize maximum-residual
norms of vectors obtained in previous iterations. This helps
to prevent the algorithm slow down due to an alternation of
data-vectors corresponding to maximal-residual norms ob-
tained from iteration to iteration.

As any local minimization of a nonconvex objective function,
the proposed algorithm is prone to getting trapped in a local
minimum. Therefore, a proper initialization may be crucial for
obtaining a good solution. Since MX-SVD finds a suboptimal
solution using global principles, it provides a good initial point,
which is close to the global minimum. Therefore, in our simu-
lations we use the subspace obtained by MX-SVD as an initial
point for the proposed approach.

The proposed approach for minimizing is summa-
rized in Algorithm 2.
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Algorithm 2: Conjugate Gradient Algorithm for Minimizing
on the Grassmann Manifold.

1) Given , such that and column space
that coincides with the subspace obtained by MX-SVD,
compute

, with satisfying

and set
2) For ,

2.1) Obtain the compact decomposition of ,

2.2) Normalize the principal angles
2.3) Perform Backtracking-Armijo line search (see
Algorithm 1) along the geodesic

2.4) Update the subspace
2.5) Parallel transport the tangent vectors and

to the point

2.6) Compute the new gradients
Euclidean: , with satisfying

Grassmann:
2.7) Compute the new search direction via Polak
Ribiére conjugacy condition formula

, where

IV. SYNTHETIC DATA SIMULATION RESULTS

In this section, we compare the results of applying SVD,
MX-SVD and MOOSE to simulated examples in the presence of
anomaly vectors. For this purpose the input data is constructed
as follows:

(30)

with

SNR SNR (31)

where is a matrix with orthogonal unit-norm columns
spanning the background subspace; is a matrix with
orthogonal unit-norm columns spanning the subspace of anom-
alies; is a matrix of background vector coefficients
with columns drawn randomly from a Gaussian distribution
with covariance matrix ; is a matrix
of anomaly vector coefficients with columns drawn randomly
from a Gaussian distribution and normalized to have unit-norm;
and is a matrix containing white Gaussian
noise with variance equal to .

TABLE I
MAXIMUM RESIDUAL-NORM SIMULATION PARAMETERS

For SNR defined as

SNR (32)

one can easily verify that background vectors have SNR
SNR , whereas the anomaly vectors have SNR SNR . More-
over, due to the structure of the anomaly vector coefficient ma-
trix , the norms of noise-free anomaly vectors are equal. This
construction is designed to produce anomaly vectors that are
equally significant.

Obviously, anomaly vectors are characterized by their low
number compared to the number of background vectors, i.e.,

. However, their number is allowed to be higher than
the anomaly subspace dimension that they belong to, i.e.,

. The extent of anomaly subspace population (loading) can be
characterized by the loading ratio defined as follows:

(33)

Thus, the minimal loading ratio corresponds to the case
where the number of anomalies is equal to the anomaly subspace
rank. The larger the value of is, the more anomaly vectors
populate the anomaly subspace.

In our simulations we used the parameters shown in Table I.
It is important to note that all parameters were selected to reflect
a typical situation in hyperspectral images. Thus, SNR and
SNR were selected to satisfy SNR SNR since the anomaly
and the background subspaces in hyperspectral images are not
orthogonal and, therefore, the anomaly vectors have weak or-
thogonal components to the subspace of background vectors.

In Fig. 3 one can see empirical pdfs of the maximum-residual
norm obtained via a Monte Carlo simulation,
where was generated 1000 times. As mentioned in [3], the
estimated subspace by SVD may be skewed by noise in a way
that completely misrepresents the anomaly vectors, since SVD
uses norm for penalizing the data misrepresentation, which
is not sensitive to the anomaly-vector contributions. Hence,
as clearly seen from the figure, the max-norm data residuals
obtained by SVD (thick solid line) have high values which
correspond to a poor representation of the anomaly vectors. It
is also demonstrated in [3] that for MX-SVD yields

(34)

In words, the empirical distribution of the maximum data
residual norm for is very close to the dis-
tribution of the maximum residual norm of noise ,
which has a limiting distribution known as the Gumbel distri-
bution [22] (plotted in thin solid line in Fig. 3). However, as
seen in that figure, for (in this simulation ),
MX-SVD produces max-norm data residuals (whose pdf is
plotted in dashed line) that are higher than the max-norm noise
residuals. This happens since MX-SVD estimates the anomaly
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Fig. 3. The pdfs of �� �� obtained via Monte Carlo simulation. The
empirical pdfs of �� �� obtained by SVD (thick solid line), MX-SVD
(dashed line), MOOSE (dotted–dashed line) and the limiting Gumbel distribu-
tion approximating maximum residual norm of noise (thin solid line).

Fig. 4. Mean subspace error versus anomaly loading ratio � for parameters
of Table I. Mean-sample of the subspace error as a function of� obtained via a
Monte Carlo simulation using SVD (line with star marks), MX-SVD (line with
circle marks), and MOOSE approach (line with diamond marks).

subspace by directly selecting anomalous vectors from the
data that contain noise, which skews the resulting subspace.
The result is significantly improved by applying the optimal
approach which produces max-norm data residuals (whose pdf
is plotted in dotted–dashed line) with values that are even lower
than one would obtain from the Gumbel distribution.

The paradox of such a “super-efficiency” of the optimal ap-
proach is explained as follows: On one hand, the Gumbel dis-
tribution approximation is valid for max-norm realizations of
data vectors drawn from Gaussian distribution. On the other
hand, the max-norm data residuals obtained by MOOSE stem
no longer from a Gaussian distribution, since they are mini-
mized by MOOSE and, as a result, become lower than if the
corresponding data vectors where randomly sampled from a
Gaussian distribution.

In Fig. 4 we compare SVD, MX-SVD and the proposed
MOOSE algorithm in terms of subspace estimation error. The
subspace error used here is defined to be the largest principal
angle defined as follows [11]:

(35)

where and denote the estimated subspace and the original
subspace used for the data generation, respectively. In our sim-
ulations, for each value was generated 50 times. The con-
sidered values were sampled logarithmically in as
shown in Fig. 4. For each value we plot the mean of the
subspace estimation error values obtained by SVD (line with

Fig. 5. Ground truth. A thirtieth-band of each one of four image cubes used
for evaluation. The ground-truth anomalies were manually identified, marked
in white and encircled in red.

star marks), MX-SVD (line with circle marks) and the proposed
approach (line with diamond marks). As clearly seen from the
figure, the proposed approach corresponds to the lowest mean
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TABLE II
SUBSPACE ESTIMATION METHODS IN TERMS OF MAX. ERROR NORM.

subspace estimation error for all values. The MX-SVD and
the proposed approach perform much better than SVD for a
wide range of values. For values high enough SVD
manages to catch up with the other two -norm based ap-
proaches, since then the anomalies become significant in terms
of the -norm.

V. REAL DATA SIMULATION RESULTS

In this section we compare the performance of SVD,
MX-SVD, MOOSE and HySime when applied to 4 hyper-
spectral image cubes. The images were collected by an AISA
airborne sensor [25] configured to 65 spectral bands, uniformly
covering VNIR range of 400–1000-nm wavelengths. The ob-
tained image cubes are hyperspectral
images, where , , and denote the number of hyperspectral
bands, the number of rows and the number of columns in the
image cube, respectively.

The assumed signal-subspace rank is . It was delib-
erately chosen to be below the real signal subspace rank, the
estimated values of which were found to be between 15 and 20,
as obtained by applying MOCA on the images under evalua-
tion. This poses signal-subspace estimation algorithms in chal-
lenging conditions, since by using a lower rank, we make the
background vectors and the rare vectors compete harder for a
better representation by the estimated signal subspace. This sit-
uation may occur in practical situations (such as local anomaly
detection algorithms) where, on one hand, the application is op-
timized to work better in a low dimensional subspace, while on
the other hand, this subspace is required to contain anomaly-re-
lated information.

The only ground-truth information available for this evalua-
tion were locations of man-made objects. In Fig. 5 are shown
images of the thirtieth-band of each of the four image cubes
used for the evaluation. The ground-truth anomalies, which are
marked in white and encircled by red ellipses, were manually
identified using side information collected from high resolu-
tion RGB images of the corresponding scenes. The ground truth
anomalies consist of vehicles and small agriculture facilities,
which occupy few-pixel segments.

Since the man-made objects are anomalous in these images,
it is difficult to represent them with low error by employing
the classical -norm based methods, we evaluate the anomaly-
preserving algorithm performances in terms of the maximum
residual norms obtained on the ground-truth anomalies. That is,
the best algorithm should have the following property: once ap-
plied on a whole image cube, the -norm of the ground-truth
anomaly residuals and the -norm of the whole image should
be the lowest compared to the other algorithm results obtained

in all image cubes. In other words, the better algorithm repre-
sents better not only all image pixels, but also the anomalous
ones.

Thus, in Table II one can see that MOOSE has the lowest
-norm of image residuals and the lowest -norm of

the ground-truth anomalies in all examined images. SVD and
HySime have the highest -norms of image residuals and
anomaly residuals that are equal in all images, with a little
advantage of HySime for most of the images. This shows that

-based approaches poorly represent anomalies and that the
worst-case error obtained by SVD and HySime in the whole
image is on anomalies. The -norms of image residuals and
anomaly residuals obtained by MOOSE are different, meaning
that the -norms of image residuals are obtained on the
background, i.e., the anomalies were represented even better
than the background. It is instructive to note that the total CPU
time consumed by MOOSE in our evaluations was twice as
long as the CPU time consumed by MX-SVD (which is used
by MOOSE for initialization). Since the results of MX-SVD
are much better than those of SVD and comparable to those
of MOOSE, it turns out that practically, MX-SVD is a good
choice when one is looking for an anomaly preserving subspace
estimator.

VI. CONCLUSION

In this work we have proposed an algorithm for dimension-
ality reduction of high-dimensional noisy data that preserves
rare-vectors. The proposed algorithm is optimal in the sense that
the estimated subspace (locally) minimizes the maximal-norm
of misrepresentation residuals. The optimization is performed
via a natural conjugate gradient learning approach carried out
on the set of dimensional subspaces in , , known
as the Grassmann manifold. The proposed algorithm is denoted
as Maximum of Orthogonal complements Optimal Subspace
Estimation (MOOSE) and is the optimal version of a recently
proposed greedy algorithm named Min-Max-SVD (MX-SVD).
As any local minimization of a nonconvex objective function,
MOOSE is prone to getting trapped in a local minimum.
Therefore, a proper initialization is crucial and is obtained
by employing MX-SVD that uses global principles to find a
suboptimal solution that is close to the global minimum. The
results of MOOSE and MX-SVD were compared to the results
of – based techniques (SVD and HySime) by applying them
both on simulated data and on real hyperspectral images. It
was demonstrated that the results of MOOSE and MX-SVD
are much better than those of SVD in terms of max-norm
residual error, obtained in both simulated and real data, and in
terms of the subspace estimation error obtained for simulated
data. Although MX-SVD exhibits results inferior to those of
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MOOSE, the results of MX-SVD are quite comparable to those
of MOOSE meaning that practically, the greedy MX-SVD
algorithm is a good choice, since it is more computationally
efficient.
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