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Abstract

In this paper, we address the problem of redundancy-remtuofi high-dimensional noisy signals that
may contain anomaly (rare) vectors, which we wish to presefer example, when applying redundancy
reduction techniques to hyperspectral images, it is eisgénipreserve anomaly pixels for target detection
purposes. Since rare-vectors contribute weakly to/theorm of the signal as compared to the noise,
{s-based criteria are unsatisfactory for obtaining a goodessmtation of these vectors. The proposed
approach combineg, and ¢, norms for both signal-subspace and rank determination angdiders
two aspects: One aspect deals with signal-subspace dstimaining to minimize the maximum of
data-residual,-norms, denoted a4, ., for a given rank conjecture. The other determines whether t
rank conjecture is valid for the obtained signal-subspacepplying Extreme Value Theory results to
model the distribution of the nois& ..-norm. These two operations are performed alternatelyguain
suboptimal greedy algorithm, which makes the proposedacaapr practically plausible. The algorithm
was applied on both synthetically simulated data and on khwgaerspectral image producing better

results than commo,-based methods.

Index Terms

Signal-subspace rank, singular value decomposition (SWVildimum description length (MDL),

anomaly detection, dimensionality reduction, redundamduction, hyperspectral images.



. INTRODUCTION

Redundancy reduction is one of the central problems facezhvdealing with high-dimensional noisy
signals. In many sensor-array applications, signal vediefong to a lower-dimensional subspace than the
observed data. This signal-subspace could be estimatedsaddfar redundancy reduction by projecting
the observed data vectors onto it. The estimated signapagbsproperties should adequately reflect
needs of application that uses this low-dimensional sutesphn this paper, we focus on applications
that analyze anomaly vectors, such as target detectionperBgectral images. Therefore, the estimated
signal-subspace should contain (preserve) such vectoeskiibwledge of signal-subspace implies also
a knowledge of the corresponding signal-subspace rank. nonaber of applications in the literature
the signal rank (order) is assumed to be known - such as théewaf independent source signals in
Blind Source Separation via Independent Components AngdRs]sthe order of the channel FIR model
in blind single-input/multiple-output channel identificat [15], [16], [17]; the sighal-subspace rank in
linear system identification algorithms [7], [8], [10]; thember of individual pure spectra (endmembers)
in hyperspectral image processing [24], etc.

In practice, the signal-subspace and rank have to be estinfil@m observed vectos; }Y |, assumed

to satisfy the following linear model:
x; = As; + z;, 1=1,...,N, Q)

wherex; € IR? is the observed random vectar; € IRP is the data-acquisition or/and model noise;
s; € IR", and A € IRP*", (r < p). In some of the applications abowe, is a vector of hidden source
signals, A is some “mixing” matrix through which the sources are obsdrwhile in a hyperspectral
application the columns oA are the pure materials spectra (endmembers)sarbleir corresponding
abundances [24]. The observed dimensicis obviously known, whereas the signal-intrinsic dimensio
(rank) r is not.

A number of approaches have been proposed in the literagaee[18], [19], [20]) for signal-subspace
and rank estimation under the assumption shaindz; are independent, stationary, zero-mean and ergodic
random Gaussian processes. Under these assumptions tithaeted signal subspace is determined by
minimizing the />-norm of misrepresentation residuals belonging to the dementary subspace.The
classical methods are principal components analysis (PGA3i§nal-subspace estimation and methods
like minimum description length (MDL) [11] and others [14]rfoank determination.

In this paper, we propose a redundancy reduction approachigb-dimensional noisy signals con-



taining anomaly (rare) vectors that, typically, contriomteakly to the/s-norm of the signal as compared
to the noise. This makeé,-based criteria unsatisfactory for obtaining a good regmtgtion of rare
vectors, which may be of high importance in denoising andedisionality reduction applications that
aim to preserve all the signal-related information, inghgdrare vectors, within the estimated low-
dimensional signal-subspace. For example, in a problerachfrrdancy reduction in hyperspectral images,
rare (anomalous) endmembers that are present in just a fewpdels contribute weakly to th&-norm

of the signal, compared to the noise. Therefore, their doutin to the signal-subspace cannot be reliably
estimated using af-based criterion, as will be shown in more detail in the failog sections. Yet, the
representation of the rare vectors can be crucial for anpahetiection that might follow the redundancy
reduction stage.

The problem of representing well and compactly all signaltmes; including rare ones, in a low-
dimensional subspace didn’t attain much attention in therdture. The opposite is true: there are
applications where the rare-vectors are treated as autliext may skew the nominal signal-subspace
estimation. The problem of dealing with outliers has beemmsively studied in the literature. Related
works ([9],[22],[23] and many others) propose robust patenestimation techniques, which are designed
to exclude the outlying measurements.

In contrast to robust parameter estimation techniquesnttbod proposed here is designed to represent
well both abundant and rare measurements, irrespectivdneaif frequentness in the data. In other
words, a good representation of all measured vectors isllgqogoortant. For this purpose, we define a
deterministic matrixy € IR”*¥ that consists of signal components only. Our goal is to findctslamn

space and the rank &, given an observed matriX € RPN with columnsxy, ..., xy,
X=Y+7Z, 2)

whererank Y = r is unknown,r < p, N, andZ € IRP*" is a noise matrix with i.i.d. zero-mean
Gaussian entries.

Our approach combines two norn¥s, and /., for both signal-subspace and rank determination and
considers two aspects: One aspect deals with the deteraninait the signal-subspace for a given rank
conjecture. The other determines whether the rank cong&uralid, given the obtained signal-subspace.
The corresponding operations are performed alternatelhamomcreasing sequence of tested subspace
rank values, until the rank conjecture is affirmed. The sigudispace estimation aims to minimize the

maximum of misrepresentation-residuél-norms denoted a5 ..-norm. Mathematically, thé; ..-norm



of a matrix X is defined as follows:

X200 2 max iz ©)

=1,...,

where x; denote columns oK. It is easy to see that; ., is @ norm on a vector spade of p x N

matrices, since for anX, X, Xy € V the following holds:

=

- [leXl2,00 = laf[[X]l2,00,
2. [1X1 4 Xoll2,00 < max ([[xiill2 + llxz,l2) < max(lxifl2 +max [xa,l2 = [ X1ll2,00 + | X2ll2,00,
3. [Xll2,00 > 0,
4. [X|l200 =0 <= X =0.

The signal-subspace rank is determined by applying ExtrenheeVBheory results [25] to model the
distribution of the misrepresentatiofd ..-norm. Since/, , penalizes individual data-vector misrepre-
sentations, it helps to represent well not only abundaotevs, but also rare-vectors. Since we use the
maximum-orthogonal-complements (residuals) for the rdeteation of both signal-subspace and rank,
we call the proposed algorithmiMaximum Orthogonal-Complements Algorithm (MOCA).

This paper is organized as follows: Section Il discusses aimafty criterion for signal-subspace
determination for data that contains rare-vectors. In 8ediil we describe a signal-subspace determi-
nation approach, which is based on a combinatiorf,0énd ¢, .. norms. We denote this approach as
Min-Max SVD (MX-SVD). In Section IV we show simulation resulteat compare the performances
of classical SVD and the new MX-SVD approaches for signalsabs determination in presence of
anomaly vectors. In Section V we describe the signal-sulespatk determination approach that preserves
rare-vectors. In Section VI we present simulation resultsamhparing the performance of classical MDL
with the proposed approach for signal-subspace rank detation. The comparison is performed on
both synthetically simulated data and on a real hyperspleictiage. Finally, in section VIl we conclude

this work.

[I. OPTIMALITY CRITERION FOR SUBSPACE DETERMINATION

Before getting into the development of an estimator of ajgabs that may include rare vectors, we first
characterize the presence of rare-vectors. For demados@hpurposes, we show in Fig. 1 a schematic
plot of a subspace of abundant vectors and rare-vectors. Aumaant vectors (marked by dots) lie close
to a subspace spanned by the vest@rAs it is seen in the figure, the rare vectors (marked by cirateb
dashed arrowsyq, vy, v3, v4 don't belong to the abundant vector subspace spannee,b@bviously,

rare-vectors are characterized by their low number contbtreéhe number of abundant vectors. Rare



vectors are supposed to lie far from the abundant vectompsuales They, however, are allowed to belong
to a subspace of a dimension lower than their number. It i®itapt to stress that unlike in the example
(for p = 2), the observed dimensionality (in the general case) is expected to exceed the dimension of
the subspace spanned by abundant and rare vectors combined.

The example above can be generalized by the following prgpert

Rare vector presence property: The p x N matrix Y is said to contain rare-vectors if there exists a
decompositionlY = [Y|Y2]II, wherell is some permutation matri’; andY, arep x N; andp x Ny
submatrices ofY, such thatVy; + Ny = N, N1 > Ny, andrange Y1 C range Y.

This property states that the matfiX is considered to contain rare vectors if the numbe¥Yafolumns
that are linearly independent of all the oth¥ércolumns is relatively small.

In order to develop a rare-vector preserving signal-sutesgstimator, we should define an optimality
criterion that is sensitive to the appearance of rare-vedto the data. First, we consider d@p-based
optimality criterion, since it appears in Singular Value Dexposition (SVD) - a well-known technique for
the signal-subspace estimation [3]. Then, we show#hétased criteria are not appropriate for estimating
a signal-subspace that contains rare vectors, and proposgming/, and/..-based criteria as a remedy.

As noted above, at the signal-subspace determination,stidgeaank is assumed to be known, say
rank Y = k.

Fig. 1. Schematic plot demonstrating rare vectors presence in datas, spans abundant vectors (dots) subspadeys, vs
and v, denote rare vectors (circles).



A. Sgnal-subspace estimation via SVD

According to the SVD approach, the signal-subspége= range Y is estimated by minimizing the

/5 norm of the residuals:

S, = argmin||X — P.X||%, = argmin||P,. X||%, (4)
L L

s.t.rank £ =k,

where|| - || b denotes Frobenius normd, C IR and P, denotes an orthogonal projection onto subspace
L. It can also be shown that under a Gaussian assumption onothmrms of Y, S‘k coincides with
the maximum-likelihood (ML) estimation of;, [1]. The estimated signal-subspaSg is obtained via
SVD of the observation matriX asX = USV’, whereU andV arep x p and N x p matrices with
orthonormal columns, respectively, aSd= diag{51,...,5p}, §1 > 82 > ... > §,. The signal subspace

Si is equal to span ofiy, ..., Gy} - the firstk columns of U (see [3] for details).

B. Drawbacks of minimizing the ¢ norm in the presence of rare-vectors

Intuitively, it seems that minimizing the observation e&lsP,.x;, i = 1,... N, as a function of,

could be appropriate for estimatigy Indeed, forC = S,
PﬁLXi:PELZi7 1= 1,...,N, (5)

which means that given a precise signal-subspace estimdkie data residuals are equal to the corre-
sponding noise residuals. Whereas, fof S, one expects to obtain signal contributions in the residual
subspaceC*, which are likely to increase the residual squared ng#p . x;||?. This can be seen from
the fact that since is statistically independent gf, so are their projections onto the null-spacefof

Moreover, sincez; are zero mean i.i.d., it is expected that
1Pexl|? = [|Peoyill® + [Pzl (6)

Therefore, looking forS that minimizes residual norms is reasonable. Howeverguain/, norm (like

in (4)) can be inappropriate in the presence of rare-vecsimse the contribution of rare-vector residuals
to the /;-norm may be much weaker than the contribution of noisedteds. As a result, the estimated
subspaceS may be skewed by noise in a way that completely misrepreskatsare-vectors. In some

practical cases this miss-representation may occur wgh probability, as demonstrated in simulations

below.



First, we define the Rare-vector Signal-to-Noise Ratio asvidio

RSNR 2 S?nm(,PYibundYTaTe) _ S?nin(,Piju"dYrare) (7)
EPys )~ G-be

abund
whereY . is a submatrix ofY composed of all rare-vector¥, ,;...q IS @ submatrix ofY composed

of the remaining (abundant) vectorB; .  is a projection onto the null-space ¥pund; s2 . (D) is

the squared minimal non-zero singular value of the argumeattix D, and o2 is the noise variance.
The choice of the minimal non-zero singular value is esseriiace it reflects the rare-vectors subspace
perturbation by additive noise [4], i.e., the error in raestor subspace estimation. That is, RSNR
measures the ratio between the contribution of rare-vecitorthe direction of the least-significant
eigenvector of the rare vector-residuals in the null-spaicabundant vectors, and the contribution of
noise in that direction. We also defit&V R as follows:

Y apundll?
SNR ToNe? (8)

Now, we describe the setup of simulations that show a tygiaaé for which rare-vectors are misrepre-
sented by SVD. A x N = 10%x 10° signal matrixY (which corresponds to a typical hyperspectral image

cube consisting of0° pixel-vectors of dimensioh0?, each) was generated, such tNat= [Y wpund|Yrare)»

using a Gaussian distribution for the columns{& ,;...¢ With a covariance matriCy = 100021p7q,

abund

q =5, andy,qe € null Y7, wherel,, , denotes a diagonalx p matrix with ¢ < p nonzero diagonal

abund’

entries, all equal to 1. Sinc€ ;. (Yrare) = ||Yrarel|3, it follows that

HYTare”% HYTareH%
RSNR = = , 9)
B[P, 2B} (p— K)o’

Then, the “measured” data-matriX was obtained aX = Y + Z, where theZ columns are Gaussian
with a covariance matrixC, = 021, ,,.

In our simulations, for eacl®SN R value X was generated00 times. We considef0 RSNR values,
sampled uniformly in the rang@, . .., 170] for o2 = 1, as shown in Fig. 2 (a). In a dashed (dot-dashed)
line we plot the minimum (maximum) of00 generated values (per RSNR value) of

v 2 [Ps. X3 00 = max [ Ps.x; 3, (10)
j=1,..,.N
where/; , is a norm defined by selecting thenaximum />-norm of the data vector residuals (corre-
sponding to the null-space @, k¥ = ¢+ 1 = 6 in (10)). In a thin solid line we plot|y,..||? as a
function of RSNR.



We repeated the simulation above for matrigéswith Y = Y, (i.e., there are no rare-vectors in
the data). The horizontal heavy solid line shows the mearevalw;, £ = ¢ = 5, corresponding to data
without rare-vectors. In both cases - with and without a-kag€tor, Sk was obtained via SVD.

The maximum residual normy, = HP}XH%’OO in data without rare-vectors has a narrow distribution,
since it approximately equals to the maximum norm of the mm'essidualsHPSéZH%,OO, which has a
narrow distribution, explained by Extreme Value Theory ressids shown in Appendix I. Therefore,
has nearly a “deterministic” behavior in data without raestors.

However, in the presence of rare-vectors foe ¢+ 1), it is likely to obtainv, values that are higher
thanHPSljZH%m. Thus, as it is seen from the figure, there is a range of RSNR vlluesRSN R < 140,

p =102 and N = 10° in this example), for which the value of, in the presence of a rare-vector lies
much higher (between the dot-dashed and dashed linessespireg the min and max values, respectively)
than the nearly deterministic value of in the absence of a rare-vector (heavy horizontal solid).line
This phenomenon corresponds to the poor representatiorrest/egtors by SVD. This range of RSNR
values, however, is of high practical importance in somdieajions. For instance, in hyperspectral that
we examined, characterized by SNR100, the observed RSNR satisfies RSNR30, which means that
SVD would most likely fail to appropriately represent ramztors in this application. On the other hand,
for high RSNR values, the rare-vector contributions becostemger in thels-sense, compared to the
noise contributions. As a result, for high RSNR values, SVDrasents well the rare-vectors. This can
be seen from the fact that the dot-dashed line in Fig. 2 corgetg the heavy horizontal solid line.

For clarification, in Fig. 2 (b) we show results of the above dation for an assumed incorrect
dimensionality value ok — 1. As expected, SVD “prefers” to represent abundant vectoris fEsults
in a maximum misrepresentation error that is dictated gddglthe norm of the rare-vector for a much
wider range of RSN R values. Note that the min and max values are not equal beaduse noise
added to the rare vector. We also simulated the case of a gdimensionality ofk + 1 and noticed,
as expected, that it produces results close to the case abthect dimensionalityt in Fig. 2 (a).

In summary, the above example demonstrates that SVD mayypm@piesent the rare-vectors for an

important range of low RSNR values.

C. Sgnal-Subspace determination by /5 ~.-norm minimization

In the last example we have seen that SVD, béirgptimal (4), may not be sensitive to rare-vectors,
leaving large rare-vector residuals‘ﬁ;ﬁ. In order to tackle this problem, we propose usiag, instead

of /5, which transforms the optimization problem (4) to the fallog form:
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Fig. 2. Monte-Carlo simulation of SVD-based signal-subspace estimation ihe presence of rare-vectors fop = 10? and

N = 10°. The rare-vector squared norfiy,«..||3 (solid thin line), the sample-minimum of maximum data-residual squared-
normsvy, in the presence of rare-vectors (dashed line), the sample-maximum of the maximurarésitdual squared norm, in

the presence of a rare-vector (dot-dashed line), the sample-mean of maximum-resgdual squared-norms, in the absence

of rare-vectors (heavy horizontal solid line); a) for correct rénk) for “wrong” rank & — 1.

Se = argmin|[PsX|J3 (11)
c
s.t. rankL = k.
The objective function of this optimization problem is ndffelientiable and, therefore, is hard to optimize.

In order to make the problem differentiable, analogoushthi® Chebyshev (minimax) approximation

problem in [31], the problem of (11) can be recast as follows:

A~

S = argminy (12)
Ly
S.t. ”Pﬁin”% <x Vi=1,...,N,
rank £ = k,

where the additional parameter was introduced to bound all residual squared notj#s.x;||>
(including the maximal one) from above. Thus, by minimizihggtbound with respect t4, one minimizes
the maximum residual norm corresponding |&||2 - of (11), which makes problems (11) and (12)
equivalent.

Although the obtained equivalent optimization problemiffedentiable, it still seems to be practically
intractable because of the large multiplicity of consttairwhich is equal taV (the number of data
vectors). Therefore, in the next section we propose a subaptgreedy algorithm that is found to

produce good results.
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[11. SIGNAL-SUBSPACE DETERMINATION BY COMBINING SVD WITH MIN -MAX OF RESIDUAL

NORMS (MX-SVD)

In order to make the minimization of (11) or (12) computaditiy plausible, we propose to constrain

the soughtS;, basis to be of the following form:
Sk = range [¥,_,| ] , (13)

where €, is a matrix composed ok columns selected fronX, and ¥;_; is a matrix withk — h
orthogonal columns, obtained via SVD #f,.X. As demonstrated in the previous section, the,
norm of data-vector residuals is governed by the rare-veuiss-representations via SVD (which ds
- optimal), whereas abundant vectors can be successfyhgsented via SVD. Therefore, the main idea
of the proposed approach, which we denote as MX-SVD, is t@cbhare-vectors int@2, in order to
directly represent the rare-vectors subspace. Since eaterg are not necessarily orthogonal to abundant
vectors, matrix(2; also partially representsbundant vectors. The residual abundant vector contribution
to the null-space of2! is represented by principal vectors found by applying SVDRep X. As noted
above, the columns if2;, are directly selected fromix;}#', the set of noisy data vectors. Although this
makesrange €2, a noisy estimation of the pure rare-vectors subspace lliregpiresents well the noisy
rare-vectors in the data, which is, actually, the main dbjeccf MOCA.

The determination of the basis vectorsfin terms of[¥_x|24], for a given value of;, is performed

as follows: First, we initializg§ ¥4 |], such that
\Ilk = [u1,...,Uk]; QOZH7 (14)

whereuy, ..., u, arek principal left singular vectors oK.

Then, a series of matriceg®;_;[Q2;]}%_, is constructed such that

Qiv1 = [Qlxw,] (15)
Uiy = [P, 4], (16)
where, for eachi = 0,...,k — 1, w; is the index of a data vectat,,, that has the maximal residual
squared normr;:
w; = a_rgl]m%\P[q,k_ilﬂi}LxﬂL a7

lI>

Ti

HP[‘I’FJQJLXMH{ (18)
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anday,... v, ; , arek —i— 1 principal left singular vectors oPg. X. Thus, thek columns of
[ ;|Q;], for eachj = 0, ..., k, spank-dimensional subspaces, respectively. Each subspacerisespa
by a number of data vectors collected in the maf2ixand by SVD-based vectors that best represent (in
5 sense) the data residuals in the null-subspac@ ofMoreover, each subspace is characterized by it's
maximum-norm data representation errgr One of these subspaces is to be selecteSi,asn the light
of our objective to minimize the worst-case representatioar, we choosé), = range [¥_p|Q5], with
the value ofh that minimizes the/; .-norm of residuals, i.e.,
h = argminr;. (29)
§=0,...k

This policy combines thés-based minimization of abundant vector-residual normsh Wit -based
minimization of rare vector residual norms. As we have sewgtieg, the rare-vectors have large residuals
with respect to principal subspaces found by SVD. This prgp&duld cause them to be selected among
columns of 2y, whereas the abundant vector projections onto the nubespd 2, would lie in the

rangeW,_;. A flowchart summarizing the MX-SVD process is shown in Fig. 3.

IV. MX-SVD vs. SVD - SIMULATION RESULTS

In Fig. 4, we show empirical pdfs quSkLXH%OO, obtained via a Monte-Carlo simulation fér =
Tabund + Trare = 5 + 3 = 8, whererq g 1S the rank of abundant-vectors subspace ang. is the
number of rare-vectors, which were generated as in the qusvexample of section II-B by appending
orthogonal vectors of equal nornfy; }7*, y; € null Y7, A 10> x 10° matrix X was generated
1000 times for RSNR= 10, ¢ = 1. The pdfs of||735k+XH§7Oo corresponding to subspace estimation by
MX-SVD (dashed line) and SVD (solid line) are shown in Fig. 4(a).

It is clearly seen from the figure that max-norm residuals iobthvia MX-SVD have a lower value
and have a much narrower pdf, as compared to residuals ebtdiy SVD. As a matter of fact, the
MX-SVD-related pdf is very close to the pdf drI‘PgéZH%,OO, which equals to the squared norm of
the maximum-norm noise residual. This fact is supported by 4ib). Here, we plot the empirical pdf
of ||733¢X|\§,oo obtained via MX-SVD (dashed line) versus the exact pdﬂy@gﬁzugm (solid line),
obtained from a model (with the above parameters) that iedhas Extreme Value Theory results,
presented in Appendix I.

In summary, MX-SVD was designed to yiel\(j?SkLX||§7Oo ~ ||7?$¢Z|y§’oo for k£ > r in the presence of
rare vectors, as opposed to SVD, which produces arbitragg leasiduals for a range of low RSNR values.

The fact that fork > r the maximum-norm residuals are governed by the maximummesalization
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k - given signal-rank

Initialize:
j=0 - rare-vectors rank
Qp = ] - rare-vectors
subspace

Find principal-subspace
of rank k-j in rare-vectors

residual-subspace
Wy = S/YD' ParX
—J ’ - -
|J=J+1
Determine index of the
maximum data residual-norm
wj = argmax [Py, a1~ Xill
i=1,...,.N
i
Pick up the maximum Augment
residual squared norm rare-vectors
— 2 Subspace
Ty = ||7)[\pk,j|n,-]waj|| P
T Q11 =[x, ]

yes J/\ no T

Find rare-vectors
rank corresponding
to min-max residual
h = argmin r;

7=0,...,k

Stop.
The resulting
subspace basis is

(W5 n|2%]

Fig. 3. MX-SVD flowchart. For a given signal subspace rank valke constructs a signal-subspace basis of the form
Sk = [¥r_1n|%], h € integers [0, k], that minimizes||Ps. X||3 ., where2,, is responsible for representing rare-vectors and
W, is responsible for representing the remaining (a’bundant) vectors inatae d

of the noise will be used in the next section for constructingignal-subspace rank estimator, which is

based on statistical properties (Ps. Z||3 ..

V. RANK DETERMINATION

In this section we construct a signal-subspace rank esimiafrecall that the signal-subspace basis
may include rare-vectors). This rank estimator is based @mexng the maximal data residual norms
HP%XH%%, for an increasing sequence lofvalues. The only thing we know aboﬂrPSAk%XH%’oo is that
for k£ < r, it could be arbitrarily higher thavﬁPSkLZH%’OO; whereas fork > r, due the signal-subspace
estimation approach, which minimizés..-norm of residuals, one may assume that the maximum-norm

data residual is governed by the maximum-norm noise rekidaa

1P X[300 = 1P, 213 (20)



13

0.1 " " 0.1
|
L H L
o oost ] Q 0.05}
o I o
I
ly
0 I N f 0 L L L
0 500 1000 1500 120 140 160 %80 200 220
||7DS‘LX||%,00 ||PS‘J-X||2,<>Q
(a) (b)

Fig. 4. The pdfs of ||773¢X\|§,oo, obtained via a Monte-Carlo simulation. (a) The empirical pdfs oﬂPSkL X||3,00 Obtained
by MX-SVD (dashed line) and SVD (solid line) for RSNR 10, 0 = 1,p = 10*, N = 10°, k = Tabund + Trare =5+ 3 = 8
(b) The empirical pdf 011\7’3¢XH3,00 by MX-SVD (dashed-line) versus the exact pdf|dPs. Z||3. .. (solid line).

Guided by (20), we consider a test that determines the raak follows in the next section.

A. Sgnal and noise hypotheses assessment

We assume that for somie rpund < k < r, the signal-subspaa@, estimated by MX-SVD described
above, is close to the subspace of abundant-vectors. Thisngsien is plausible due to the SVD-part of
the MX-SVD process that is designed to represent well the ddmirvectors subspace, which is of rank
raund < 7. AS a result, the abundant-vector residuals in the comp’lmrrjesubspacékL are governed by
the noise contribution, whereas the rare-vector residualg still include significant signal contributions.
Thus, fork > r.wund, the set of all data-vector indices can hypothetically badéid into two subsets

according to the properties of data-vector residuals:

I'y, = {indicesy; of abundant-vector residuals
A, = {the remaining data-vector indicés }, (21)
such thatj = 1,...,#k, i =1,..., #A, and #I'y, > #Ay, where# denotes cardinality of a set.
Let 7, be the maximum data-residual squared-nonms= _nlqaxNHPSlxjH?. Givenny,, we formulate
J=1 k
the following two hypotheses:
Hy : n belongs tol'y, (22)

Hy : n belongs toA,. (23)
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The following notation will help us to perform a statisticaladysis ofny:

L

ve 2 max [Py, |
G = max [P |l (24)
Now, 7, can be expressed as:
N = max(vg, §k). (25)

Due to the assumption leading to (21), and according to (@4),value ofy; is governed by the
extreme value statistics of maximum-norm noise realizatidNow, we set the rank estimatorto be

equal to the minimal value df for which the following condition is satisfied:

p(Holni) > p(Hi|nk), (26)

which means that the optimal rank is reached when there igleehiikelihood that the maximum data-
residual squared norm; is governed by the noise statistics (i.e., it doesn't inelwignificant signal
contributions).

In order to evaluate the conditional probabilitie§Hy|n;) and p(Hi|nx), one has to specify pdfs
fu. () and f¢, (+), or, equivalently, cdfg, (-) and F, (-). Whilst the probability of maximum-norm noise
realizationy, can be determined by Extreme Value Theory results, as showmprerdix I, the pdf of
&, is generally unknown. The only thing we know abgutis that at each iteratioh, it has to be less

or equaln,_;. A possible choice forfe, (-) is therefore,

&k ~ U0, mx—1], (27)

whereU denotes a uniform distribution.

Now, it can be shown (see Appendix Il for details) that pastenypotheses probabilities are given

by:
B Nk fo, (1K)
p(Holnk) = e for (e) + Fo (1)’ (28)
p(Hiln) = Fo () (29)

nkfl/k (Uk) + FVk (Uk)’
where the expressions above are valid oK 7, < n_1. It is important to note, however, that the
functional form of the posterior conditional probabilgieas given in (28) and (29), does not depend on

nk—1. Moreover, due to a successive application of MX-SVD for acréasing sequence &fvalues, it
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is guaranteed thai < 7, < nx_1. Therefore, in the forthcoming expressions, we omit exphoention
of the argument boundaries.

Fig. 5(a) shows the corresponding graphs of these postemtapilities for a residual-subspace rank
I = p—k = 10%, wherep is the dimensionality of the data vectats the total number of data vectors
N = 10, and the noise std = 1. It is clearly seen that the transition region between hypsgs is
steep and narrow. Actually, its width depends on the fornf,0f(see Fig. 5(b)), which is well-localized,

as explained in Appendix I.

1 0.1
0.8 @ 0.08
| — pEH 0 leg L
0.6 ***])Hl Mk E 0.06 %l’kéx
0.4} 0.04 L A
0.2} 0.02
0 ol -~ -~ ~- - e i~
0 50 100 150 250 300 0 50 100 150 2007l-1 250
Nk T
(a) (b)

Fig. 5. a) posterior conditional hypotheses probabilitiesp(Ho|nx) and p(H1|nx) b) distributions of maximum squared-
norm of rare (solid line) and abundant (dashed line) vector residualsFor residual-subspace rafk= 102, total number of
data vectorsV = 10°, and the noise std = 1.

In summary, the signal-subspace rank is determined by EgpMX-SVD and examining condition
(26) for an increasing sequence bfvalues. As the maximum-norm residual becomes low and (26)
becomes true, it can no longer be confidently associated téltsignal contribution, and the procedure
is terminated. The estimated rank is equal to the last-exadiirvalue. As was already noted above, this
combination of applying MX-SVD and examining condition (Z6) an increasing sequence bivalues,

defines what we called Maximum Orthogonal Complement AlgarifMOCA), and is summarized next.

B. MOCA summary for combined subspace and rank determination

In this subsection we summarize the proposed approach médlssgibspace and rank determination via
MOCA by presenting its major parts in the flowchart of Fig. 6.

The algorithm begins with an initial guess for the signalspdre rank, such ds= 1. At each rank
value iteration, the signal-subspace baBjs= [¥_,|€2;] is obtained via MX-SVD of section Ill, using
the conjectured rank. Then the data maximum residual-norm is calculated in thé spdce of®,.

This norm is tested in order to decide if it belongs to the nbigeothesis (this decision is performed by
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evaluating inequality (26)). If the noise hypothesis passige algorithm is terminated, and the estimated
signal-subspace and rank equals to the span of the lashedthj,, and to the last value d@f, respectively.

Otherwise, the rank conjectufeis incremented and a new iteration is carried out.

Initialize:
k=1 - initial rank

Obtain
signal-subspace basis

P = [Vr_pn|Q%]

via MX-SVD
‘ Increment rank
Calculate maximum conjecture
residual-norm k=k+1
2 3
= max _||P, X
Yk x€Ecols XH [(Tr—_n|Qh] H
¥

Perform noise-related
hyp. testing of ¥,

¥

Is the
max-norm noise
test passed?

no

Stop
Sk = range [¥_p|Q4],
r=k

Fig. 6. Maximum Orthogonal Complement Algorithm (MOCA) flowchart.

VI. COMPARISON OF RANK DETERMINATION BY MOCA vs. MDL

In this section we compare the performance of MOCA with tHahe Minimum Description Length

(MDL) approach for signal-subspace rank determination.

A. MDL basics

MDL is a widely-used model-order determination criteritlased on coding arguments and the mini-
mum description length principles [12],[13]. The same rudes been also obtained via a rather different
approach, based on a Bayesian Information Criterion (BId).[Thus, in [11] it is proposed to apply
the MDL for determining the model-order of (1), witfs;} being an ergodic Gaussian process with a

positive definite covariance matrix and the noise variamtés unknown.
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The MDL was also proven in [11] to be consistent in terms ofdiigy the true signal-subspace rank,
with probability one, as the sample si2é increases. It is based on minimizing the following critario

with respect tok:

MDL (k) = —In f(X|O(k)) + %nlog N, (30)

where f(-) is a family of probability densities parameterized ®(k), andn denotes the number of

model degrees of freedom. In our case, whetds known, manipulation of the results in [11] gives:

~

k P
. l;
MDL (k) = "log(li) + (p — k) log(0?) + k + Y 5+ k(2 — k)
=1 i=k+1

log(N)
N 9

(31)

Where{l}}f denote eigenvectors of the data-covariance ma&ri& E{xx’}, ands? is the known noise

variance.

B. Smulation of rank determination by MOCA vs. MDL

In this subsection we compare the results of applying MOCA MIDL to simulated examples, in the
presence of rare vectors, and assess their performancaria té rank errors expressed by rank-RMSE
defined bye,qnx = /E(r — 7)2.

Fig. 7 shows the performance of MOCA vs. MDL 0= r,pund + 7rare = 5+ 10 = 15, SNR = 100
(the rare vectors were generated as in the example of sdt®)nwith Fig. 7 (a) and (b) corresponding
to different sizes ofN = 10* and N = 10°, respectively. MOCA and MDL were testexd) times for
each value of RSNR . Then, the rank-determination errors walilated and plotted. The erref,,
obtained by MDL for a range of low RSNR values, which is a fumetdf N, is equal tol0 (the rare-
vectors subspace rank,,.). In other words, the MDL completely fails to determineat low RSNR
values. The dependence of,,, on N is obvious - the larger the sample si2éis, the more “blind”
becomes MDL to rare-vectors, which have to be much strongerder to become apparent to MDL.
Thus, the correct rank determination by MDL starts only atyveigh values of RSNR. In contrast to
MDL, MOCA performs much better, with low values ef.,,; obtained already at a very low RSNR
value.

It turns out, that the probability of rank determinationogtiny MOCA becomes small and approximately
constant already for RSNR as smallagsee Appendix Il for details). This turning point is markeg b

a heavy dot-dashed vertical line in Fig. 7.
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It is important to note that the simulations above were desigto reflect a typical situation seen in
hyperspectral images, in which the background processasacterized bySN R ~ 100 (20dB), while
anomalies are characterized By N R < 30. Hence, the simulations above indicate that MDL is expected
to be “blind” to the anomaly subspace rank in typical hypecsmal images, whereas MOCA is expected
to succeed in estimating the rank.

A reasonable question that arises is how to identify thesttimm point, below which one should use
MOCA due to its ability to recover the rank at low RSNR values] above which one could use MDL
due to its computational simplicity. We turn to (31) and netthat MDL(k) has to accept its minimum
at k. That means that the increase in penalty (the last term o) (&9 to be smaller than the decrease
in minus log-likelihood (the first part of (31)) in the transit from k& — 1 to k£ and, respectively, larger in
the transition fromk to k£ + 1. Now, due to construction oY in simulations (see II-B)), the eigenvalue

[, stemming from rare vectors is assumed to satisfy:

Ik ~ 0% + ||yrare||?/N = 0> + RSNR(p — k) /N. (32)

By neglectingk with respect top (sincek < p) and approximating; ~ o2 for i > k, then, with
some straightforward manipulations, one obtains that thelierium between the change in penalty and
change in log-likelihood (whe# is changed td: + 1) is reached when:

log(NV)

i (33)

2 p p__
—log(o —i—RSNRN)—i-RSNRW =2p

By numerically solving (33) with respect to RSNR, one obtéims turning point in RSNR value below
which the MDL is expected to be unreliable in determining tdbation of rare-vector to rank. This

turning point is marked by a heavy dashed vertical line in Fig.

C. Comparing MOCA with MDL on real data

In this section we compare results of MOCA and MDL for sigeabspace and rank determination of
hyperspectral images. We then compare MOCA and MDL-SVD perdaices in dimensionality reduction
of hyperspectral images by applying MDL and MOCA on a banklwiw 50 hyperspectral cubes of size
400 x 450 with 65 spectral bands. Due to space limitations, results for acfmube are demonstrated
here.

One of hypespectral bands of this cube is shown in Fig. 8. Eadtl pi this hyperspectral image

corresponds to &5 x 1 vector. MOCA assumes the noise to be statistically indepenbletween spectral
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Fig. 7. MOCA vs MDL comparison via Monte Carlo simulations. The rank estimation erraf, ..., = \/E(r — #)2 in the
presence of 10 rare-vectors as a function of RSNR, fotNa} 10*, (b) N = 10°. The heavy dashed and dot-dashed vertical
lines delimit a region in which MOCA is reliable enough and has better pegoca than MDL.

bands. Therefore, in order to make the noise i.i.d., the rettsen each band was estimated and normalized
to 1 by scaling the data.

First, MOCA was applied on the upper part of the image showngn &ithat is delimited by horizontal
and vertical white lines. According to ground-truth evidenthis part corresponds to a “pure background
signal” stemming from agricultural fields radiance. Indettwh signal-subspace determined by MOCA
is given byS, = ¥,, which corresponds té = 7,k = 0; i.e., no rare-vectors were selected in order
to represent best the signal-subspace in this subimage., M@®EA was applied on the entire image
producingS; = [Ws|Q24], which corresponds té = 10, h = 4. Such a result can be explained by the
presence of anomaly pixels (marked by circles) located aththttom of the image. According to the
ground truth, these pixels belong to vehicles, which arenaious to the natural surroundings in the
image. Thus, there aredata vector pixels comprisin@, columns, which represent the anomaly pixels
subspace in the data.

It should be stressed that the number of column®jrmmay be less than the number of anomaly pixels
in the data, since the columns ©f, are intended to span the anomaly pixels subspace, which may b
of a rank lower than the number of anomaly pixels. Moreoviges the rare-vector subspace and the
background-subspace are not orthogonal to each otherpthmigs of€2, may span a subspace close to
the background subspad®;, found initially in S;, which may produce 8, ~-norm of residuals small
enough in order to stop at an earlier MOCA iteration. This ak@ why the background subspace rank
is lower in S, than inS; (the pure-background case with no anomalies).

Turning to the examination of MDL performance, we note thdIMs known to be sensitive to devi-

ations from the white noise assumption [34]. We have fourad the noise normalization preprocessing
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Fig. 8. Signal-subspace and rank determination in a hyperspectral imageMOCA was applied on (i) the subimage above
the white lines produces, = ¥, (ii) the entire image includes anomalies marked by circles, produsing [®|Qu]. The
MDL-estimated rank in both cases is 7.

that produced good results with MOCA, isn't sufficient for aper operation of MDL, since it doesn'’t
compensate for small correlations between noise compsineatdjacent bands due to a crosstalk between
adjacent sensors, and still leaves noise component vasadiferent. We have applied, therefore, the
Robust MDL (RMDL) algorithm of [34] (which assumes differediagonal entries?, . . . ,of,), but with a
slight modification, to account for correlations betweendld@cent noise components. The modification
we applied to RMDL is described in Appendix IV.

We have applied the modified RMDL algorithm for rank estimatan the above mentioned hype-
spectral images: the pure-background subimage and theaaantaining entire image. In the pure-
background subimage case, the MDL has produced a rafik which is in accordance with the result
of MOCA. However, in the case of the entire image, which cimstaare vectors, the MDL algorithm
misses the contribution of rare-vectors to signal-subspank, leaving the rank value at 7, whereas
MOCA manages to detect the contribution of anomalies to theas-subspace and rank producing a
higher rank of10 corresponding to both the background and rare-vector ixel

Now, all hyperspectal pixels were projected onto the sutsdaund by SVD, of rank found by
MDL, as well as onto the signal-subspace basisfound by MOCA. In Fig. 9 we show squared norms
of residuals corresponding to (a) MDL-SVD, and (b) MOCA basalspaces. It is clearly seen that

MOCA-based dimensionality reduction better representpigtls in the image including the anomalies,



21

compared to MDL-SVD based dimensionality reduction, whiclsrepresents anomaly pixels producing

high-intensity residuals (white blobs in Fig. 9 (a)) at theication.

L]

(@) (b)

Fig. 9. Squared norms of residuals corresponding to (a) MDL-SVD, and (b MOCA based subspaces.

VIlI. CONCLUSION

In conclusion, in this work we have proposed an algorithnréaiundancy reduction of high-dimensional
noisy signals, named MOCA, which is designed for applicatiovhere a good representationboth the
abundant and the rare vectors is essential. The combinedaéef rare and abundant vectors is obtained
by using the proposed; ..-norm that penalizes individual data-vector miss-repreg®ns. Since this
criterion is hard to optimize, a sub-optimal greedy alduomtis proposed. It uses a combination of SVD
and direct selection of vectors from the data to form theaigunbspace basis. The rank is determined by
applying Extreme Value Theory results to model the distrdoutbf the maximal noise-residuél-norms.

In simulations, conducted for various rare-vectors sigoaloise conditions, the proposed approach is
shown to yield good results for practically-significant RSN&ues (RSNR essentially measures the SNR
of rare-vectors with respect to noise), for which the cleasnethods of SVD and MDL fail to determine
correctly the signal-subspace and rank, respectivelyjgif Himensional signals composed of abundant
and rare vectors.

The proposed approach was also applied for the signal-scéspad rank determination of a hyper-
spectral image with and without anomaly pixels. The reslitsIOCA were found to be equal to those
of MDL (or when necessary RMDL) for the pure-background swdge whereas in the presence of

anomalies, MOCA has detected a higher rank than MDL, while Midhduced the same rank as in the
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pure-background case. This indicates that MDL failed to rdeitee correctly the signal-subspace rank
of a hyperspectral image composed of both abundant and esters, whereas MOCA succeeded in
representing it well.

The proposed approach can be further developed for anomsdgtobe and classification, which is an

objective of our current activity.

APPENDIXI

DISTRIBUTION OF MAXIMUM -NORM NOISE REALIZATIONS

In this appendix we characterize the p@f (-) of section V-A. We assume that the noise is a zero-mean

white Gaussian process, with known standard deviatiomhen, its residual squared norms
Cri 2 1Pgrzill?, (34)

i=1,...,N, have a Chi-squared distribution of ordef rank S = p — k, denoted byy2({, 02) with

the following pdf [30]:
u )(1/2)—1

uw) — 1 s e—u/QU2
Jlw) = 22T (1/2)0? <02 ' (35)

For largel, the Central Limit Theorem can be used to obtain the followipgraximation:
Chi ~ X2(1,0%) = N (10?,210%) . (36)
Now, the limiting distribution ofyy, which satisfies

= : 7
Vk Z,:r{@?fNCkm (37)

can be obtained using the following Extreme Value Theory tesul
Theorem 1: [27]
If {¢;}Y, isi.i.d., with absolutely continuous distributiafi(x) and densityf(z), and letting

() h(z) = f(z)/(1 - F(x))
(i) by =F'(1~-y)

(i) an = h(by)

(Vi) w = limy, - 22,

wherez* is the upper end-point of",
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then, for My = max{¢;...(n},

Play(My —by) <u) —

N—oo

exp(—e™ "), if w=o00 7 38)

exp{—[1+ 2]“},if w < o0
The proof is found in [27].
In words: Theorem 1 says that the maximumMoi.i.d random variables has a limiting distribution that
depends o - a parameter derived from their individual distributiof®r the purposes of the present
work, we consider normal and chi-squared distributionsictvtread tow = oo.

Therefore, from (38), the limiting distribution of intereist
G(u) £ exp(—e™), (39)

also known as the Gumbel distributiénThe mean and std of a variable distributed as (39))axe0.5772
and v = 1.6450, respectively. The normalizing coefficientsy and by are also functions of the;
distribution. Theorem 1 also describes how to calculate trenalizing coefficients given the distribution
function of ¢;.

Unfortunately, there are no known analytical expressiamsthfie normalizing coefficientsy and
by corresponding to{(y;} (defined in (34)) that are chi-square distributed. In our watidns of the
asymptotic pdf ofy in Fig. 4(b) above and in the sequel, we used the results of €hedrto calculate
ay andby numerically. Note, that.;y and by are also functions of and o, since they depend on the
x2(1,0?) distribution, which is a function of ando.

However, in order to explain why the pdf ¢|fP‘§LZH§700, shown in Fig. 4(a) and Fig. 5(b), is so
narrow; one can use the approximation in (36) to obtain thieviing asymptotic analysis, which can
be conducted analytically. It can be shown [25] that §¢r} of Theorem 1, which are Gaussiaiy is
distributed as follows:

P(My <u) — Glan(u—bn)), (40)

N—oo

!Extreme Value Distributions are the limiting distributions of the minimum or the maminof a very large collection
of random observations from the same arbitrary distribution. Gumi888)1 [28] showed that for any well-behaved initial
distribution (i.e., F(x) is continuous and has an inverse), only a fewefsaaf limiting distributions are needed, depending on
whether one is interested in the maximum or the minimum, and also if the @ltisew are bounded from above or below (see
[25]).
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with
ay = (2InN)'/?

by = (2InN)V/%—

1
5(21nJ\f)—1/2(1nan\f + In4n).

Therefore,
x — o2l
P < ~3g —b 41
N CIE~> ) @
with mean and std:
V21
un = o’ <n+bN\/21+l> (42)
an
2./
oN = 7 217 (43)
an

While this approximation doesn't provide us with an acoeratean and std ofy, it is instructive to
look at the following ratio that defines a relative width of a ot N > 1, [ > 1:
HN
— o« 2InN++VilnN. (44)
ON
It is observed that this ratio doesn’t depend«on and it is log-dependent oN. Thus, the ratiquy /o
tends to infinity asV — oo or I — oo. For example, fof = 100, N = 10° and white noisey /ox ~ 23
corresponding to quite a small relative width. The dominatdr in obtaining such a high ratio is the

high dimensionality of = 100.
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APPENDIXII

DERIVATION OF POSTERIOR HYPOTHESIS PROBABILITIES

In the following, we derive the conditional probabilitie6Hy|n) andp(H;|ny) in (28) and (29), based
on pdfs f,, and fe,:

f(Ho,me) = fu.(y)p(&r <m) =
Fon () Fe () = o (i) —2—,
Nk—1
f(Hy,ne) = fe,(m)p(ve < mi) =
Feu 06) Fun () = P () ——,
Nk—1

foe(e) = f(Ho,mi) + f(Hi,mi) =

L [k for (i) + Fu, ()]

Nke—1
 fo ) Fe, (k) Mk S, (k)
ol = = G ) + P )’
 Ja ) Ey () Fy (k)
UL = oy Mo () + Fon ()’

which are the expressions shown in (28) and (29).

APPENDIXIII

ASSESSMENT OFMOCA RELIABILITY IN TERMS OF RSNR

In the following we assess the dependence of MOCA rank estmarror on the value of RSNR.

Let's recall that the RSNR notion was introduced in the cont#x8VD performance assessment
in the presence of rare-vectors. It measures the ratio leetwlee contribution of rare-vectors and the
contribution of noise to the signal covariance matrix. Thioging /»>-based, RSNR is an ambiguous
measure for MOCA performance assessment, which is affdntaddividual data-vector contributions.
For example, two identical rare-vectors of the safgpanorm valuel, have the same RSNR as that of
a single rare-vector of afy-norm value ofi\/2, and thus have the same SVD performance. However,
MOCA may behave differently in each of the two cases in thianggle. Thus, in some applications,
there is typically only one rare-vector out ®6° data-vectors, whereas in other applications, e&n
collinear vectors out o10° are considered to be rare. Different rare-vector multifiéis cause MOCA
to depend differently on the RSNR. In order to eliminate thisb@uity, we constrain the rare-vectors

in the following analysis to be linearly independent. Othise, the RSNR value should be corrected by
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an appropriate rare-vectors multiplicity factor in orderabtain an equivalent MOCA performance.

If the SNR of abundant vectors is high enough, then we can asshat fork > r,, wherer, is the
abundant vectors subspace rank, the SVD-part of MOCA estsnaell the abundant vectors subspace,
and that MOCA iterations don't terminate befoke= r,. Thus, in the complementary subspace for
rqo < k < r, one would find only residuals of abundant vectors, compog$etise only, and residuals
of rare-vectors. Let's denote

A
Y7'are = PYL

abund

YT’CL'I‘@? (45)

i.e., the projection of the rare-vectors sub-matrix on® dlbundant-vectors null-space. Our purpose here
is to characterize RSNR values fbrvalues satisfying-, < k < r, for which there is a high probability
that rare-vectors will be selected amofdg_,. columns (see (15)).

Let's assume that for some iteratidn r, < k£ < r, the matrix€2,_,_ is composed of rare vectors.
We are looking for conditions on RSNR that guarantee selgdtie next rare-vector at iteration as
in (15), with probability close td. This RSNR value would also justify the assumption on the matri
Qy_,, above, since (as we’'ll see later) it would guarantee thewacors selection for alt, < k£ <,
with probability close tol. If one neglects the effect of noise on the rare vectors s&lda Q. , then
the ¢5-norms of the remaining — k rare vectors can equivalently be obtained as therask diagonal

entries of the upper triangular matrRR obtained via the following QR decomposition:

QR = Yrarel_L (46)

whereII is a permutation matrix that MOVEE, ... columns of rare-vectors selected ., to the
leading positions. Now, we use the following lemma in ordeobtain a relation between the RSNR of
Y and the diagonal entries @&.

Lemma 1: The minimal singular valus,,;, of a full-rank m x n matrix M with m > n, satisfies
smin < pj, j =1,...n, wherep; are the diagonal entries of a triangular matrix in the QR dgusition
of MII, with IT - any permutation matrix.

Proof: Let p; be a diagonal entry for somg=1,...,n, and letII be another permutation matrix

that moves column of MII to the last. Then, the correspondipg of MIIII satisfies:,, < pj, since
it is a norm of a projection onto a smaller (contained) subsp&low, according to [2], the following

holds: 5,,;, < p,. Therefore,s,i, < p;.
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Using the lemma above and the definition of RSNR (7), one obtains
Sk = RSNRZ(p — 1), (47)

wheres, 2 [|Fmazl|?, andFmq. is the maximum-norm rare-vector residualdit. Since the termination
condition of MOCA is based on testing the maximum squarednnof residualsy, = [|Ps. X3 .., it
k k)

is important to calculate the pdf of,, which satisfies:

e = max (&, k), (48)
where,

Vg = ||P3¢Xabund\|%,oo (49)

&= [[Ymaz +nl?, (50)

we also assume here that the RSNR value is large enough, so that
argmax_|[ly; + nf| = argmax_|[y:|, (51)
y:ecolumnsY ¥:€columnsY
with probability close tol.

Now, the distribution function ofy; for r, < k < r is given by:

Fy () = G (INCXp g 5(), (52)

where G, _;.(-) is the Gumbel distribution of the noise max-norm wijih- £ degrees of freedom, as
described in Appendix |, andNCXf,fk’é(-) is the noncentral chi-square distribution [32], with— &
degrees of freedom andlis its non-centrality parameter. The results of [32] andti@ta(47) can be
used to obtain:

Sk
)= 2 > RSNR(p — 7). (53)

The pdf ofy,_1, f,._,, corresponding to a situation whege 1 = RSNRr?(p — ) (selecting the worst
case in (47)), RSNR= 2, p = 100, » = 10, r, = 5, 0 = 1, N = 10* is shown in Fig. 10, solid line.
The choice ofk = r — 1 is arbitrary for numerical demonstration purpose only. Ntive distribution of
nr, Fy,. (), equals to the distribution of maximum-norm noise residgal,(-), sinceS;- is supposed to

include only noise. The pdf of,, f,,, is plotted in dashed line. The rank-determination threshpl |
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at iterationr — 1 (marked by a vertical line) equals g _;, satisfying:

p(Holnr—1) = p(H1|ny—1), (54)

where Hy, H; are defined in subsection V-A.
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Fig. 10. Pdf of the maximum residual norm_; andn, for k = r — 1, ¢,_1 = RSNF%;2(p —r), RSNR= 2, p = 100,
r=10,7, = 5,0 = 1, N = 10 at iterationr — 1 (solid line) and iteration (dashed line), respectively. The rank-determination
thresholdr, at iterationr is marked by a vertical line.

Now, the probabilityp, of rank underestimation, given that iteratien— 1 is reached, is given by
pu = F,,_,(7.—1), which for the parameters above is of the order16f°! It turns out that for the
parameters above, the order of the rank underestimation isrepproximately the same for adllvalues
rqe < k < r, which is small enough to be neglected.

It is important to note that typicallyf,, , would lie farther from the threshold._;, since selecting
equality in (47), in this example, corresponds to the woestec This decreases the probability of the
rank underestimation even further. Due to propertieg,of;.(-), the distribution ofiy, has a weakog IV
dependence on the data sample sgsee (41)). Whereasfcngm(-) doesn’'t depend oV at all.
Therefore, the rank underestimation error is also negkgibt N = 10? as well as forN = 10°.

The probability of rank overestimation, at iterationk = r, is given byp, = 1 — F, (1,) = 1 —
Gp—r(7), Which for the parameter values above giygs~ 0.027. This value is nearly constant for all
RSNR values above, which, as we have seen earlier, guarantee a negligiplé can be decreased by

modifying the hypotheses equality test of (54) to the follugvlikelihood ratio test:

p(Holny) < yp(Hi|ny), v <1 (55)

This should produce a lower error-rate at the expense of aehigh,. Fortunately, as it is clearly seen
in Fig. 10, the pdff, , lies far fromr,_;, which means that a loweas, can be obtained by choosing

an appropriatey < 1 leaving p,, still negligible.
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APPENDIX IV

RoBUSTMDL WITH A MODIFICATION THAT ACCOUNTS FOR NOISE DEPENDENCE BET\WEN BANDS

In section VI-C we apply the RMDL approach [34] as &nbased alternative to the classical MDL
approach for signal-subspace rank determination. The gggamof RSNR that the noise covariance
matrix is diagonal, but with different diagonal entrig§ . . ., af,, makes the algorithm robust to deviations
of noise variances from being equal in all spectral bandsortfer to model also the observed small
dependence of noise components between adjacent bandssurethat the secondary-diagonal noise

covariance matrix entries are all-equal to a paramgterAs in [34], let's defines? £ % b o? and
2

w; £ o — o2, Now the model parameters vector of (30) can be expressed via

Ok) = Ay, My Vi, oo, Vi oy, . wy, Br).- (56)

This modification requires changing steps 3 and 4 in [34] (p.73%% follows:
In Step 3: Adding the computation of. as follows:

B = mean(offdiag (R — AR, L (AR — (an’k)QI)) , (57)

where offdiagR) returns a second diagonal of the matRx
In step 4: Changing the computation Bf= R — wy to E =R — wy, — 3L, whereIs denotes a

p X p matrix with ones on its second diagonals and zeros everpmblse.
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