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Skeleton-Based Morphological
Coding of Binary Images

Renato Kresch,Member, IEEE,and David Malah,Fellow, IEEE

Abstract—This paper presents new properties of the discrete
morphological skeleton representation of binary images, along
with a novel coding scheme for lossless binary image compression
that is based on these properties.

Following a short review of the theoretical background, two
sets of new properties of thediscrete morphological skeleton
representation of binary images are proved. The first one leads
to the conclusion that only the radii of skeleton points belonging
to a subset of the ultimate erosions are needed for perfect
reconstruction. This corresponds to a lossless samplingof the
quench function. The second set of new properties is related to
deterministic predictionof skeletonal information in a progressive
transmission scheme.

Based on the new properties, a novel coding scheme for
binary images is presented. The proposed scheme is suitable for
progressive transmission and fast implementation. Computer sim-
ulations, also presented, show that the proposed coding scheme
substantially improves the results obtained by previous skeleton-
based coders, and performs better than classical coders, including
run-length/Huffman, quadtree, and chain coders. For facsimile
images, its performance can be placed between the modified
read (MR) method (KKK===4) and modified modified read (MMR)
method.

Index Terms— Binary images, image coding, mathematical
morphology, skeleton.

I. INTRODUCTION

M ATHEMATICAL morphology [5], [7], [24], [27], [28],
is a relatively new, rapidly growing, nonlinear theory

for image processing, based on set theory, and with a strong
geometric orientation. It was developed by Matheron and Serra
in the mid 1960’s for describing the structure of materials by
image analysis of their cross sections. Originally developed for
binary images, it was later (during the 1970’s) generalized for
grayscale images as well [32]. For binary images, mathemat-
ical morphology provides a well-founded theory for analysis
and processing, and, for grayscale images, it yields a nonlinear
method for geometry-based processing.

The principal morphological representation for binary im-
ages is theskeleton[19], [21], [28]. The skeleton (defined

Manuscript received April 4, 1996; revised December 23, 1997. This
work was supported by the Fund for Promotion of Research, Technion–Israel
Institute of Technology. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Thrasyvoulos N. Pappas.

R. Kresch was with the Department of Electrical Engineering, Tech-
nion–Israel Institute of Technology, Haifa 32000, Israel. He is now with
Hewlett-Packard Laboratories Israel, Technion–Israel Institute of Technology,
Haifa 32000, Israel (e-mail: renato@hp.technion.ac.il).

D. Malah is with the Department of Electrical Engineering, Technion–Israel
Institute of Technology, Haifa 32000, Israel (e-mail: malah@ee.technion.ac.il).

Publisher Item Identifier S 1057-7149(98)06859-6.
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Fig. 1. Definition of skeleton in terms ofmaximal discs. (a) Maximal discs
in a shape and (b) the skeleton as the centers of all the maximal discs.

below) was originally proposed and developed independently
of mathematical morphology, and is sometimes still used today
with no aid from the morphological theory (e.g., see [31]).
On the other hand, the skeleton can be calculated entirely by
the basic operations of mathematical morphology [19], which
makes the skeleton a morphological representation, enabling
image analysis using morphological tools.

Blum [2] introduced the notion of skeleton by means of the
following intuitive model: Suppose a given shape to be a grass
field, and suppose that at time its whole boundary is set
on fire. The fire then propagates inwards at a constant speed.
The set of points at which the fire extinguishes is the skeleton
of the shape.

Since its intuitive introduction, the skeleton has been defined
mathematically in a number of ways. The various definitions
are different characterizations of the “grass-fire” model, and
they provide (almost) equivalent results for continuous planar
shapes. A common definition of the skeleton follows [27].

Definition 1: Let a maximal disc inscribable in a given
shape be a disc included in , but not contained
in any other disc included in . The skeleton of is the set
of centers of all its maximal discs.

Fig. 1 illustrates the above definition.
As noted by Serra [29], the morphological skeleton theory

has developed in the literature in topological and algebraic
branches. From the topological point of view, the skeleton of
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Fig. 2. Partial reconstruction of the skeleton representation. Simplification
of the shape is obtained by removing skeleton points related to maximal discs
with value smaller than a threshold.

a shape can be seen as a thin, topology-preserving caricature
of the shape that is useful for image analysis and pattern
recognition. From an algebraic point of view, the skeleton
is the result of thedecompositionof a given set into the
superposition of simpler elements, selected from a predefined
family of elements (discs of increasing sizes). That decom-
position provides an imagerepresentation, which consists of
the collection of skeleton points, together with the radii of
the corresponding maximal discs. The reconstruction of the
original shape is obtained by the union of all the maximal
discs. Since our main interest is in coding, this paper follows
the algebraic branch.

Let us elaborate on the skeleton representation and its
application to compression. Following are the main algebraic
properties of the skeleton representation.

• The skeleton representation can be calculated by means of
an algebraic closed-form formula, due to Lantuéjoul [19]
(see also [21] and [27]), which is reviewed in Section II.

• The skeleton provides a decomposition of the original
shape into features (discs) of different sizes, which can
be seen as components in different “scales.” The small-
est maximal discs can often be considered as “detail,”
whereas the largest ones can often be considered as the
main (coarse) structure. This provides ahierarchical or
pyramidal interpretation to the skeleton representation.

• Simplified (morphologically “lowpass” filtered) versions
of the original shape are obtained by partial reconstruc-
tions from the skeleton representation (see Fig. 2).

The skeleton representation has the following undesired char-
acteristics.

• It usually containsredundant points,that is, many skele-
ton points can be discarded and still the original shape
can be fully reconstructed (see Fig. 3). The redundant
points usually form long, often undesired, branches in the
skeleton. Mathematical characterization of the redundant
points can be found in [13], and methods for redundancy
reduction are proposed in [13], [15], [21], and [22].

• Unlike other binary image representations (e.g., chain
code and quadtree), it is not a self-dual representation,
because the skeleton of (the complement of ) is
totally different from the skeleton of (see [10] for
background on self-dual operators).

The skeleton representation can be considered as a low-
complexity, suboptimal solution to the following problem:

Problem 1: Let be the family of all discs (with all
sizes and positions).

Fig. 3. Skeleton redundancy. Only the pointsa and b are not redundant in
this skeleton representation.

For any given shape , what is the smallest subset of
that exactly covers ?

It is a low-complexity solution due to the existence of a
closed-form formula for the skeleton calculation; it is subop-
timal because it contains redundancy.

The above serves as a framework to skeleton-based coding
of binary images. That framework has been applied not only
to compression of original binary images, like facsimile [4]
or sign-language sequences [21], but also in grayscale coding
schemes in which binary images are extracted from the original
one. For example, in [25], the bit-planes of a grayscale image,
which are each a binary image, are coded by a skeleton
decomposition. Another approach, which gained interest in
recent years, is to use the skeleton to code the segment
contours in the context of segmentation-based coding [3], [6],
[8], [33].

However, the compression rates achieved until now by
lossless coding of the skeleton are only comparable to (and
sometimes even worse than) other simpler methods, such as
chain coding, quadtree decomposition, or run-length/Huffman
coding, applied directly to the original image. This is in spite
the fact that the structure of the skeleton has been extensively
studied and generalized in recent years [14], [21], [25]–[29],
and several different coding schemes of the skeleton have been
tried [3], [4], [21].

In this paper, we present a number of theorems introduced
recently by the authors in [16] (see also [18]) concerning
properties of thediscrete skeleton representation of binary
images. These properties, being new, are not used by previous
skeleton-coders, and this is reflected in their unsatisfactory
performance. By taking these properties into account, one can
either considerably improve the previous schemes, or design
efficient new ones.

One such new coding scheme, originally proposed by the
authors in [17] and [18], is also presented and compared to
other algorithms. Computer simulations indicate that, typically,
the proposed coding scheme substantially improves the coding
rates obtained by one of the best previous schemes for skeleton
coding, and is more efficient than coding the original image
by chain code, quadtree and run-length/Huffman methods.
For facsimile images, it usually performs better than the MR
algorithm with (used in the Group 3 standard—G3),
but, at this point, it is weaker than the modified modified read
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(MMR) algorithm (used originally in the Group 4 standard,
G4, only, and adopted later in G3) and the Joint Bilevel Image
Group (JBIG) standard [9].

This paper is organized as follows. Section II provides a
theoretical background for the morphological skeleton repre-
sentation. In Section III, some previous coding schemes for
the skeleton representation are briefly presented and compared.
Section IV reviews advanced concepts in mathematical mor-
phology that are required in the sequel. The new skeleton
properties are then presented in Section V, and the proposed
scheme, using these properties, is presented in Section VI.
Simulation results are shown in Section VII, generalizations
and extensions are proposed in Section VIII, and Section IX
concludes the paper.

II. M ORPHOLOGICAL SKELETON REPRESENTATION

This section provides a theoretical background on the mor-
phological skeleton representation. We assume reader famil-
iarity with the basic binary morphological operators: dilation,
erosion, opening, and closing (the definitions and properties
of these operators can be found, for example, in [5], [18], and
[27]). Like in some of these references, the dilation, erosion,
opening, and closing of a binary setby a structuring element

are denoted here by , , , and ,
respectively.

A. Skeleton Computation via Morphological Operations

In [19] (see also [27]), Lantúejoul proved that the skeleton
of a topologically open shape in can be calculated

by means of binary morphological operations. In that context,
the sets , , each containing the centers of
the maximal discs of radius, are calculated by means of
Lantúejoul’s formula1:

(1)

where and denote, respectively, the topologically
open disc with radius and a topologically closed disc with
infinitesimal radius , centered at the origin. The skeleton

is the union of all the sets , .
In (1), the set represents the portion of the “grass

field” not yet burned by the fire, at time , in the “grass-
fire” model for the skeleton (see Section I). By increasing,
one simulates the “fire propagation.” The set
represents the points at which the fire doesnot extinguish at
time . Therefore, the difference between the above sets
provides the skeleton points at . Since the morphological
opening by a disc with infinitesimal radius excludes from a
shape its protruding vertices, one concludes that the skeleton
points with radius of a shape are the protruding vertices
of the “fire front” (see Fig. 4).

The sets are called theskeleton subsets,and
the function relating to each skeleton pointthe radius
of the respective maximal disc is called thequench function
[21], [27].

1From the strict mathematical point of view, (1) is an informal version of
the original Lantu´ejoul’s formula. The reader can refer to [19] or [27] for the
original version.

Fig. 4. Skeleton calculation by morphological operations. The skeleton
points are the “vertices” of the regionsX 	 rB , for r > 0.

From the collection of skeleton subsets, one can obtain
perfect or partial reconstructions of the original open shape

as follows:

(2)

where is a nonnegative scalar. For , the skeleton subsets
with radii smaller than and equal to are discarded, and a
smooth version of ( ) is obtained. By setting
in (2), one obtains a perfect reconstruction. That means that
the collection of skeleton subsets can be considered
as arepresentationof the original set .

B. Generalized-Step Skeleton

The above morphological skeleton representation has been
generalized several times in the last fifteen years with the
purpose of extending the skeleton’s scope and decomposition
family. Serra presented a discretized version of Lantuéjoul’s
formula in [27], where the decomposition elements approx-
imate discs of discrete radii in a grid. In [21], Maragos
and Schafer suggested the use of decomposition elements
other than discs, by appropriately replacing the structuring
element in the discretized Lantuéjoul’s formula. The theorems
presented in Section V below are related to a further general-
ization, proposed by Maragos in [20, p. 191] (see also [23]).
It is referred to as thegeneralized-step skeletonin [26], and
its definition is reviewed below. More recent generalizations,
which are outside the scope of this paper, can be found in
[14], [18], and [29].

Let be an Euclidean space ( in the continuous case,
or in the discrete case), and let be a series of
topologically open structuring elements in, each containing
the origin. Moreover, let this series generate a family of
elements in the following way:

(3)

The family generalizes the concept of “discs,” used in
the definition of skeleton (Definition 1). The discrete parameter

assumes here the role of theradius of the discs. As an
example, is the family of discrete squares of sides
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pixels, when is set to the 3 3-pixel elementary
square for all values of .

The generalized-step skeleton decomposition is defined by
(adapted from [20], [23], see also [26])

(4)

The sets , , and (4) are considered as general-
izations of the skeleton subsets and Lantu´ejoul’s formula (1),
respectively. As a consequence of the work in [29] (see also
[18]), it can be shown that indeed the subsets are
composed of the positions (“centers”) of the maximal elements
from the above family inside the input image . The
above result applies both to continuous and discrete input
images.

A reconstruction formula from the above skeleton, analo-
gous to (2), is given by

(5)

where is a nonnegative integer. Perfect reconstruction is
obtained for . That means that, like the original
skeleton subsets, the generalized-step skeleton subsets also
fully represent the original image . We call the indices
the “radii” of the skeleton points, by analogy to the original
skeleton. For example, see Fig. 7(a), where is the same
family of discrete squares as defined above.

Instead of decomposing into the union of maximal
discs,as in the original skeleton, a generalized-step skeleton
decomposes into the union of maximal elements of the more
general increasing family . Note that the family of
elements , used in the above skeleton decomposition,
is indexed bynatural numbers (0, 1, ). Therefore, we say
that it is a “discrete-family” skeleton. On the other hand, notice
that and the shapes in the above decomposition family are
not restricted to be discrete. They can be discrete (sets in),
or continuous (sets in ).

For simplification, we adopt from this point on the following
notation:

(6)

(7)

With the above notation, we can write the generalized
Lantúejoul’s formula (4) in the following way:

(8)

III. PREVIOUS CODING SCHEMES

In this section we review some coding schemes for the
skeleton representation proposed in the literature, and briefly
discuss their characteristics. These schemes assume a constant
generator, i.e., , , but they can be easily extended
for any generalized-step skeleton.

In [21], Maragos and Schafer propose two different
schemes. In the first one, the skeleton subsets,

, are considered as binary images, usually very sparse,
and therefore suitable for very low bit-rate coding. Thus, each

skeleton subset has its run-length coded by a Huffman or
an Elias code. The skeleton subsets are coded in decreasing
order of , providing a progressive transmissionscheme,
since according to the partial reconstruction formula (5), if the
decoding is halted at a certain point, a simplified version of
the original image is obtained. However, this coding method is
inefficient because coding each skeleton subset independently
does not take into account the strong correlation that exists
between them.

The second scheme proposed in [21] consists of coding
the binary image formed by theunion of all skeleton points,

, plus the quench function , . The
skeleton image is coded as in the first scheme by run-
length/Huffman or Elias code. The quench function is coded
by a Huffman code. Compared to the first scheme, it is faster
since it requires only one binary image to be scanned instead of
scanning each skeleton subset separately. However, it does not
permit progressive transmission. It is also inefficient in terms
of coding because it neglects any correlation that might exist
between the position of the skeleton points and their quench
values. Recently, this approach has been extended for coding
segment contours in the context of segmentation-based coding
[3], [33] (we elaborate on that in Section VIII).

The last algorithm we review here is proposed by Brandt,
Jain, and Algazi in [4], and consists of chain coding the
skeleton lines. The motivation is that, in the continuous case,
the skeleton lines of connected shapes are almost always
connected. To take advantage of this, it is proposed to code
the skeleton lines by an extended chain code, with symbols
indicating at each point if the related radius increases, de-
creases or is unchanged, in addition to the direction of the
next point, and with a header for each skeleton line indicating
the position and the radius of its first point. However, in the
discrete case, as opposed to the continuous case, the skeleton
lines may have many gaps, and this considerably reduces the
efficiency of chain coding.

A redundancy-reduction algorithm is usually performed in
order to remove most or all the redundant points in the
skeleton (see [13] and [21]). This improves considerably the
efficiency of the first two schemes, but the correlation is still
not taken into account. Moreover, the removal of redundant
points breaks even more the continuity of digital skeleton lines,
and this reduces by a great deal the performance of the last
scheme. On the other hand, artificially connecting the broken
lines of the digital skeleton, by using dummy skeleton points
(aiming to improve the efficiency of the last scheme), increases
the number of redundant points in the skeleton. A trade-off
between connectivity and redundancy removal is therefore
created and the preferred approach is not clear.

IV. SOME ADVANCED CONCEPTS INBINARY MORPHOLOGY

The concepts of descendance, connectivity, reconstruction,
and ultimate erosion are fundamental ones in this work.
They are reviewed in the following subsections, and some
of them are slightly modified for our needs. Also, this section
introduces part of the notation used in the sequel.
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A. Descendance and Connectivity

The definitions of descendance and connectivity presented
here are adapted from [28, pp. 77–78].

Definition 2—Direct Descendance:Let be a structuring
element contained in . A point is a directdescendant
of a point , under the given structuring element, iff

(9)

Definition 3—Descendance:A point is adescendant
of a point , under the given structuring element, iff
there is a chain of points, each being a direct descendant of a
previous one, starting with and ending with .

Definition 4—Connectivity:Two points and are con-
nected (under a predefined structuring element) iff each one
is a direct descendant of the other, under, i.e.,

and (10)

Intuitively, defines aneighborhoodfor which descendance
and connectivity are considered. A point descends directly
from another if the former belongs to the neighborhood of the
latter; similarly for connectivity. If, moreover, is symmetric
(i.e., ), then is a direct descendant of iff

is a direct descendant of. Therefore, in this case, direct
descendance and connectivity are equivalent.

B. Reconstruction Operator

Reconstruction is an important morphological operator,
which finds use in several applications, such as extraction
of connected components and filtering [30]. It should not be
confused with thereconstruction of the original image from
its skeleton representation,considered in the previous sections.
The reconstruction operator is defined as follows.

Definition 5—Reconstruction:Let be two sets in ,
such that , and be a predefined structuring element.
The reconstructionof from under , Rec ,
returns the set of points in that descend from points in

, under , through a path of points strictly in .
When is asymmetricstructuring element, the reconstruc-

tion of from is the collection ofconnected components
of that contain points of (see Fig. 5).

One way of performing the reconstruction operation is by
recursively calculating aconditional dilation. Specifically, if

, and denotes the -fold
application of , then

Rec (11)

Notice that the notion of connected component depends on the
structuring element chosen in the definition of connectivity.
If it is too “big,” then relatively distant points can eventually be
considered connected. Therefore,is usually selected to be as
small as possible (an 8- or 4-pixel neighborhood, in the discrete
case, or an infinitesimally small disc in the continuous case).

C. Ultimate Erosions

In [27], the ultimate erosionsare defined in terms of a
decreasing family of erosions , where is a natural

(a)

(b)

Fig. 5. Reconstruction operator. (a) Two setsA andD, such thatD � A and
(b) the result of reconstruction ofA from D, under an infinitesimal circular
structuring elementB .

Fig. 6. Discrete ultimate erosionsUn of a setX composed of two connected
components. The succession of internal lines represents the erosions ofX by
nB , n > 0.

number, and denotes the -fold dilation of by itself.
For each , the ultimate erosions of order, denoted , of
a given set , are defined by

Rec (12)

In words, the ultimate erosions of orderare the points of
that do not descend, under, from the opening of
by .

Intuitively, the ultimate erosions, at each erosion step, mark
the “convex subregions” of that are about to disappear after
a further erosion. Fig. 6 shows an example, withbeing a
disc. Notice that, although the original set is composed of
two connected components, the ultimate erosions consist of
three connected components, because one of the components
of is a union of two “convex subregions.”
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(a)

(b)

Fig. 7. (a) Binary image (indicated by the thick line), and its skeleton points.
The numbers indicate the corresponding radii and (b) the ultimate erosions
(the darker points).

Here, we adapt the definition of ultimate erosions for
generalized-step families as well:

Definition 6: We define the ultimate erosions as

Rec (13)

where and are as defined in (6) and (7), respectively,
and

,

any structuring element .
(14)

The ultimate erosions as defined aboveare contained in the
generalized-step skeleton of, when the same family
is used in the computation of both the ultimate erosions and
the generalized-step skeleton. This is because the result of
the reconstruction operation in (13) contains the set ,
which is subtracted from in the generalized Lantuéjoul’s
formula (4).

In practice, the ultimate erosions are those skeleton points
with maximal “radius” within each “convex subregion” of the
original shape. They are usually a small percentage of the
skeleton. For example, consider the image in Fig. 7(a), and
its skeleton, calculated with a constant generator ,
equal to a 3 3 square structuring element. Fig. 7(b) shows
its ultimate erosions, which belong in this case to and

only. Fig. 8 shows another example, where the skeleton is

Fig. 8. Skeleton and ultimate erosions of a portion of the coffee grains
image. The ultimate erosions are the black skeleton points.

calculated using the same decomposition family of squares as
in the first example.

V. NEW SKELETON PROPERTIES

Our main theoretical results concerning coding are presented
in this section. They are relatedonly to discrete-family
generalized-step skeleton representations (see Section II-B).

The theoretical results are new skeleton properties, divided
into two categories: 1) quench-function sampling and 2) de-
terministic prediction.

A. Quench-Function Sampling

In this subsection, we show that, for adiscrete-family
generalized-step skeleton, one can discard the “radius” of most
of the skeleton points from the representation, and still perfect
reconstruction is possible. More specifically, the radii of the
points that do not belong to the ultimate erosions can be
discarded!

The following lemma helps us formulate the above assertion
in the form of a theorem.

Lemma 1: Let be the skeleton subsets of a
generalized-step skeleton, and let be the set of skeleton
points, carrying no information about the radii; that is,

. Then, the following holds:

Rec (15)

The above result is used in the proof of the next theorem, and
leads to the corollaries presented below. The proof of Lemma
1 is given in the Appendix.

The following theorem is the main result in this section.
Theorem 1: Let be the generalized-step skeleton

subsets of a given image , and . Let ulti-
mate erosions be defined as in (13). Thenis completely
represented by the sets and .
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In other words, the radii of the skeleton points that are
ultimate erosions, together with the position of all the skeleton
points, are sufficient for completely representing the original
set .

Proof: We use induction in the following way.

1) If is the maximal radius in the skeleton, then
.

2) For each , , once is known, the set
can be calculated (see below), and

3) the original image is equal to .

In order to obtain the second part of the above induction,
suppose that is available. Therefore, is also
available. From the hypothesis, the skeletonand the ultimate
erosions are provided. Then is obtained from the
above by Lemma 1.

The above proof is constructive; it provides a reconstruction
algorithm for the original image from the resulting “sampled”
skeleton. It consists of calculating at each step, which varies
from down to 0, the set according to (15). This can be
implemented in the following way (illustrated by Fig. 9).

1) An intermediate image, which we call , is created
and initially set to the highest ultimate erosions, i.e.,

.
2) . (We assume , otherwise, we trivially

obtain .)
3) . At this point is equal to .

According to Lemma 1, for a symmetric , is the
set of those connected components ofthat “touch” ,
in addition to the ultimate erosions (see Fig. 9).

4) Rec . According to Lemma
1, at this point is equal to . Note that the points
appended to in this step are those of .

5) If , stop, and . Otherwise, .
6) Go to Step 3).

The above algorithm is also the heart of the coding scheme
proposed in Section VI.

The following corollaries are a direct consequence of (15).
Corollary 1: If is a skeleton point with radius, then

all the skeleton points that descend from it, under , have
also radius .

Corollary 2: Suppose that is symmetric, i.e.,
. In this case, if is a skeleton point

with radius , then all the skeleton points in the connected
component to which it belongs [with connectivity being under

] have also radius .
Corollary 2 can be seen as a generalization of [4, Prop. 3.2],

which states that the radius (called “distance value” there) of
each connected component is constant, when the structuring
element is a 3 3 square.

According to the above corollaries, not even all the ultimate-
erosion points need to have their radius stored! In the case of
symmetric decomposition elements, Corollary 2 states that,
for every connected component in the set of ultimate erosions,
one needs to store only the radius ofone point. Note that
the set of ultimate erosions is usually a very small subset
of the skeleton points, and, due to the above consideration,
only a small percentage of them need to have their radius

(a)

(b)

(c)

Fig. 9. Reconstruction algorithm from a skeleton with sampled quench
function. The skeleton is the same as in Fig. 7.N = 3, and the ultimate
erosion points are indicated by the dark gray pixels in (a). (a) Stepn = 2

of the algorithm, (b) stepn = 1 of the algorithm, and (c) stepn = 0 of the
algorithm. In (a)–(c),Z is indicated by the thick line, and the points inSn
are those connected components ofS (the light gray pixels) that touchZ ,
plus Un (in this case,U0 andU1 are empty).

stored. Similar results can be deduced for nonsymmetric
decomposition elements, by means of Corollary 1. The above
observations lead to an improved sampling scheme of the
quench function (see Fig. 10).

Corollary 3: A skeleton point has radius if and only
if belongs to , or but descends from ,
under , through a path of points in .

The above corollaries are used in the coding scheme pro-
posed in Section VI.

B. Deterministic Prediction

The second theorem on which the proposed scheme is
based is presented below. It permitsdeterministic predictionof
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Fig. 10. In the above examples, the dark points are the only ones in
the respective skeletons that need to have their radius coded, according to
Corollary 2. In the lower image, there are only four of these points.

information about from the knowledge about the previously
coded points.

Suppose a coding procedure where, at a certain step, the
skeleton subset of order, , is to be coded, and that

is known to both the encoder and the decoder. Since
, it follows that there are no points of

inside the region . Therefore, the encoder does not need
to code thestatus(whether belonging, or not, to ) of the
pixels inside , and the decoder does not need to “look
for” skeleton points in that region at that moment. This result
was used in the coding schemes proposed in [21].

It turns out that there is also a regionoutside that
can be predicted not to contain skeleton points from. This
region can be characterized by the following theorem:

Theorem 2: Let . If the following holds:

(16)

then cannot belong to .
Proof: The proof is by contradiction. Suppose thatis

in , and let us define the following operator:

(17)

By definition of in (7), . In addition,
operating on the set also results in ,

since

(18)

Therefore, since is an increasing operation (it is com-
posed of basic morphological operations, which are increas-
ing), then any set , such that ,
satisfies . In particular,

, , satisfies it.
However, according to (16), , and, therefore,

, which contradicts that .
Theorem 2 provides a test for each pointin : if it passes

it, i.e., if (16) holds, then its status as a skeleton point needs not
to be coded because it is known to both encoder and decoder
to be negative. On the other hand, if the test fails [(16) does
not hold], nothing can be said about the status of that point,
and it must be coded.

The above test is not viable, however, in practice, because
it is extremely computation-intensive. Luckily, a simplified,
much faster test is possible in many cases using the following
corollary.

Corollary 4: Let be a structuring element,not containing
the origin (which we denote by ), and satisfying:

(19)

and let . If , then cannot belong to .
In other words, one preselects a template, excluding the

origin, and usually containing a small number of points, such
that it satisfies (19). Since it is independent of the input image

, the above selection is done “off-line,” and only once for
a given decomposition family . During an “on-line”
coding algorithm, the “prediction test” is performed, for each
point , by placing “on” , and examining the status of the
points indicated by the template.

The points found in the above test are only asubsetof
the “predictable points” found in the test of Theorem 2. In
order to findall the predictable points, a family of all
the templates satisfying (19) should be defined, and the test
in Corollary 4 must be repeated for each. This could also
be very computation-intensive. It turns out, however, (from
simulations) that often a small subset of is enough for
finding most of the predictable points. As an example, let

, and consider a skeleton decomposition of, where
, , and is a 3 3-pixel square structuring

element. In this case, Corollary 4 above for can assume
the following specific format.

Corollary 5: Suppose , let , and consider a
morphological skeleton with a 3 3-pixel squarestructuring
element. If any of the triplets
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Fig. 11. Point(i; j) predicted not to belong toSn according to Corollary 5.

Fig. 12. Example of deterministic prediction. Here,n = 1, and the thick line
indicatesYn+1. The dark points cannot be skeleton points inS1, according
to Corollary 5.

for any integers , , and in the interval , is
contained in , then the point does not belong to .

The above triplets represent a subset of the family
related to the given squared structuring function. Fig. 11 shows
an example of a point that is predicted not to belong to

in this specific case. Fig. 12 shows another example; in
this case, , and is indicated by the thick line. The
dark points are those that can be predictednot to belong to

, according to Corollary 5.

VI. PROPOSEDCODING SCHEME

The properties proved in Section V can be used to ei-
ther substantially improve the coding schemes reviewed in
Section III, or to design new ones. For instance, the first
scheme by Maragos and Schafer reviewed in Section III
(coding of ) could directly benefit from deterministic
prediction, whereas the second one (coding ofplus the
quench function) could directly benefit from quench-function
sampling. Another expected improvement for the first algo-
rithm would be to move all the nonultimate-erosion skeleton
points from their original subsets to the same subset, e.g.,.
The algorithm by Brandtet al. could be also improved by
avoiding transmission of the radii of the nonultimate-erosion
skeleton points. However, despite the expected improvement,
the above modifications do not exhaust the benefits of the
new properties.

In this section, we propose a new coding scheme of the
skeleton representation of binary images. It gathers most
of the advantages of each of the above algorithms, besides
fully benefiting from the new theoretical properties. It is
progressive like the first algorithm by Maragos and Schafer,

fast as the second one, and explores the connectivity present
in the skeleton like the algorithm by Brandtet al. As a
consequence of the above, the proposed scheme gives better
results in simulations for compression of binary images than
the previous schemes (see Section VII below).

The coding scheme proposed here is restricted to discrete-
family generalized-step binary skeletons, defined on(dis-
crete binary images).

A. The Algorithm

After the generalized-step skeleton representation is calcu-
lated, the coding is performed in the same way as the decoding,
i.e., by reconstructing the original image.

Let be the maximal radius. Initially, for each of the
ultimate erosions , , a set is formed, in
such a way that if a point belongs to , then it does not
descend from any other point in , under . If
is symmetric, the above means that contains only one
point of each connected component of, under . The
points in the sets have their positions and radii coded. The
choice of the specific coding method for the above operation is
not critical, since the amount of information that is conveyed
by the sets is usually a small fraction of the overall
information in the image. In our simulations, we coded the

pixels of and the corresponding radii, separately,
with an arithmetic coder [44].

At this point, the main loop starts. At each step, which
varies from its maximum value, , down to zero, a scanning
procedure is performed on theexternal boundaryof and
of . The external boundary of a set is considered here to
be the points outside that are direct descendants of points
in , under .

Only the external boundary has to be searched for points
in , since the skeleton points in are necessarily linked
either to , if it is not an ultimate erosion point, or to

, otherwise, according to Corollary 3. Some points in the
above scan can be predicted not to belong to by the
test in Theorem 2; these points are skipped. The skeleton
points found in the above scanmustbelong to (according
to the reconstruction algorithm related to Theorem 1), and
their relative positions in the scanning path are coded by an
arithmetic coder. When a skeleton point is found, its boundary
is searched for other connected skeleton points in a recursive
way, before the main scanning procedure goes on.

In simulations, we found it very beneficial to usetwo
separateadaptive probability modelsfor the arithmetic coder.
A probability modelis the collection of the probabilities of
appearance of each of the symbols to be coded. In anadaptive
model, the probabilities are updated after each input symbol is
coded.2 One adaptive model is used for coding the position of
points in the main scan, whereas the second adaptive model
is used for coding the position of points that are adjacent to
previously found skeleton points (local scan).

2In the empirical adaptive model used in this work, the probabilities for
the symbols “0” and “1” are initially set to 0.5, and, during the coding
process, updated tomi=(m0+m1), wheremi�1 is the number of previous
appearances of the symboli, i = 0; 1.
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The whole coding procedure is detailed in the following
algorithm.

1) Calculate the skeleton subsets, . Form
and code the sets as specified above.

2) . .
3) .
4) (an external boundary point of). If there are no

more external boundary points to scan, go to Step 9).
5) Check (by means of Theorem 2) ifcan belong to

or not. If it cannot, go to Step 4.
6) Send to the arithmetic coder a “” if is not a skeleton

point or a “ ” otherwise. Use an adaptive probability
model.

7) If a “ ” was sent (i.e., is a skeleton point), then
. Otherwise, go to Step 4).

8) Recursively, scan the direct descendants offor other
connected skeleton points. Code nonpredictable points
with “ ” or “ ” accordingly, but use a different adaptive
probability model than the one in Step 6). After the
whole connected component is scanned and coded, go
to Step 4).

9) If , stop.
10) . . Go to Step 3).

B. Discussion on Redundancy Removal

As pointed out in Sections I and III, there are usually
redundant points in the morphological skeleton representation,
which can be removed (together with their radii) from the
representation without affecting its error-free characteristic.
This should not be confused with the result, presented in this
paper, that nonultimate-erosion points can have theirradii
(only) removed from the representation, while keeping the
representation complete. Actually, the two kinds of points
(redundant and ultimate erosion ones) are not related, and there
can be redundant ultimate erosion points as well as nonultimate
erosion points which are not redundant.

Unfortunately, one cannot usually use both properties, i.e.,
to remove the redundant pointsand the radii of nonultimate
erosion points. That is because the removal of redundant
points may disconnect connected components of the skeleton,
and the existence of the connectivity is crucial for proving
Theorem 1 presented here. This means that, after redundancy
removal, Theorem 1 may not remain valid. For this reason, the
theoretical results and the algorithm presented in the previous
sections a priori assume no redundancy removal.

However, there are two ways to modify the above situation.
One is to perform a redundancy reduction that preserves con-
nectivity (e.g., the scheme presented in Section VI-C below).
The second way is to appropriately add new points to the list
of ultimate erosions. Details and implementation of the latter
are outside the scope of this paper, but Section VIII below
briefly describes and comments about it.

C. Coding with the Square Structuring Element

A particular redundancy reduction scheme, suitable only
for the skeleton with the 3 3 square structuring element,
is proposed here. It removes a large fraction of the redundant

(a)

(b)

Fig. 13. Redundancy reduction scheme for a skeleton calculated with a
3� 3-squared structuring element: (a) original skeleton; (b) reduced skeleton.

TABLE I
LOSSLESSCOMPRESSIONRATES, IN B/PIXEL, OF THE PROPOSEDSKELETON

CODER AND OTHER KNOWN SCHEMES, FOR THEIMAGE “T OOLS”

points, without affecting the connectivity. In this case, one can
benefit both from redundancy reduction and quench-function
sampling.

The redundancy reduction scheme consists ofsequentially
discarding points of the skeleton, with radius greater than zero,
for which at least three out of the four closest neighbors are
also skeleton points. Fig. 13 demonstrates the result of apply-
ing the scheme in a simple image, where part of the skeleton
belongs to and part to . Note that the representation
remains error-free.

VII. SIMULATION RESULTS

The simulations of the proposed scheme presented here
correspond to a skeleton with a constant generator ,
equal to the 3 3 squared structuring element centered at the
origin. This particular structuring element was chosen so that
Corollary 5 and the special redundancy algorithm presented in
Section VI-C can be used. Moreover, .

Two sets of simulation tests are presented.
The first one compares the lossless compression efficiency

of the algorithm proposed in Section VI-A with some simple,
well-known coding schemes for binary images. The test image
is the 256 256-pixel “tools” (Fig. 14). The results, in
b/pixel, of the comparison are presented in Table I. As seen
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TABLE II
FILE SIZES OF COMPRESSEDFACSIMILE STANDARD CCITT DOCUMENTS, OBTAINED BY THE PROPOSED

SKELETON ALGORITHM, COMPARED TO PREVIOUS SKELETON-BASED CODER AND EXISTING STANDARDS

Fig. 14. Binary image “tools” (256� 256 pixels), used for the compression
simulations.

from the table, the proposed skeleton coder provides the best
compression (only 0.071 b/pixel).

The second set of simulation tests examines the efficiency
of the proposed skeleton coder in coding scanned documents
(fax), and compares it to existing standard coders [1], [9].
A previous skeleton-based scheme proposed in [4] (denoted

skeleton) is also compared. The eight CCITT facsimile
standard test 2376 1728-pixel images, of documents scanned
at 200 dpi, are losslessly coded by the proposed algorithm.
Table II compares the size of the obtained coded files with the
results given in [1] and [4]. Comparison of our results to the

skeleton shows a substantial improvement in skeleton-based
coding. At this point, it is still weaker than the most advanced
standards (G4, using the MMR algorithm, and JBIG), but it is
comparable to the G3 standard (using the MR algorithm, with

), being usually more efficient than it (with exception
of the “hardest” images, numbers 4 and 7).

Since the scanning in the algorithm is performedon the
boundariesof the expanding set only (Section VI-A), the
encoding and the decoding procedures are relatively fast.
On a digital DECStation 5000 (approximately 27 MIPS),

programmed in standard C, encoding of the 256256-pixel
tool image takes about 4 s, and its decoding about 2 s.

VIII. G ENERALIZATIONS AND EXTENSIONS

A. Grayscale Images

One continuation of this work deals with grayscale image
coding using a generalization of the morphological skeleton
representation to grayscale images (see [18, ch. 8]). The new
theoretical results, presented here for binary images only, are
extended there to the grayscale case, and the generalization of
the proposed coding scheme is described.

B. Geodesic Skeletons

As noted in the Introduction and in Section III, skeleton
representations have been investigated recently in the context
of segmentation-based coding (see [3] and [33]). In that
specific context, segment contours are represented by either
one of two special types of skeletons, called geodesic and
overlapping skeletons. These skeletons assure that the contour
lines that separate two adjacent segments are not represented
twice. In [3], coding schemes for the geodesic skeleton of
segment contours are considered. Unfortunately, neither the
geodesic nor the overlapping skeleton are particular cases of
the generalized-step skeleton, which means that, presently,
the new properties and the coding scheme proposed here are
not directly applicable in that context. Therefore, as already
suggested in [33], future research should also concentrate on
extending the results of this work to geodesic and overlapping
skeletons, so that the proposed algorithm can be used in coding
of segment contours.

C. Redundancy Reduction

As mentioned in Section VI-B, the proposed algorithm
can support the removal of redundant points also if one
appropriately modifies the list of ultimate erosions (see details
in [18, ch. 8]). The main idea behind this modification is to
have new skeleton points added to the ultimate erosions in
order to compensate for breaks in connectivity. A comparison
between the original and the modified scheme brings us to
the same connectivity versus redundancy tradeoff mentioned
in Section III. The trade-off is expressed in this case by the
number of points in the “ultimate erosion list” versus the
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number of redundant points in the representation, and the
preferred approach is still not clear.

IX. CONCLUSION

Although very attractive from the theoretical point of view,
skeleton-based coding of binary images has exhibited disap-
pointing results in the past, since simpler coding schemes, like
chain coding of the original binary image, showed similar (or
even better) compression results. On the other hand, the skele-
ton coding schemes used in the previous experiments have
not taken into consideration the strong correlation existing
between skeleton subsets. Actually, this correlation was not
properly characterized, and it was not clear how to efficiently
use it.

In this paper, new theoretically based properties character-
izing the above correlation are presented, and a binary image
coding scheme taking them into consideration is proposed.

The proposed binary coding scheme showed, in simulations,
substantial improvement in the skeleton-based compression
efficiency, as compared to one of the best previous skeleton-
based coding schemes, and better results than those presented
by the classical coding methods, including chain coding. When
dealing with facsimile images (fax), the proposed coding-
scheme is found to have similar performance to the MR coder
used in ITU-T fax standards, but as yet is less efficient than
the MMR and JBIG algorithms.

The scheme can be extended to grayscale images and
redundancy-reduced skeletons, and seems to be extendible
also to geodesic and overlapping skeletons. In addition, we
believe that much can still be done to improve the efficiency
of skeleton-based coding, especially in terms of statistical
prediction and context classification.

APPENDIX

PROOF OF LEMMA 1

Let us define

Rec

Rec

Rec (A.1)

We note that

Rec Rec
(A.2)

Therefore

(A.3)

On the other hand

Rec Rec (A.4)

And we shall show that

Rec (A.5)

which gives, together with (A.4)

(A.6)

Let us prove (A.5).
For , (A.5) holds trivially, since (the original

image), and .
Suppose, therefore, . We have

(A.7)

which leads to

(A.8)

Similarly

(A.9)

Therefore, since for all , we get

(A.10)

The conclusion is the validity of equation (A.5).
Now, from (A.3) and (A.6), we get , which

proves the Lemma.
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