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Skeleton-Based Morphological
Coding of Binary Images

Renato KreschMember, IEEE,and David MalahFellow, IEEE

Abstract—This paper presents new properties of the discrete
morphological skeleton representation of binary images, along
with a novel coding scheme for lossless binary image compression
that is based on these properties.

Following a short review of the theoretical background, two (a)
sets of new properties of thediscrete morphological skeleton
representation of binary images are proved. The first one leads
to the conclusion that only the radii of skeleton points belonging
to a subset of the ultimate erosions are needed for perfect Maximal discs
reconstruction. This corresponds to alossless samplingf the
guench function. The second set of new properties is related to
deterministic predictionof skeletonal information in a progressive

transmission scheme. . . The shap A V‘\
Based on the new properties, a novel coding scheme for £
binary images is presented. The proposed scheme is suitable for “‘

5]
progressive transmission and fast implementation. Computer sim- ()
S

ulations, also presented, show that the proposed coding scheme ’ %‘

substantially improves the results obtained by previous skeleton-
based coders, and performs better than classical coders, including ]

The shape ot a maximal disc

run-length/Huffman, quadtree, and chain coders. For facsimile !

images, its performance can be placed between the modified Skeleton

read (MR) method (K =4) and modified modified read (MMR)

method. Fig. 1. Definition of skeleton in terms ohaximal discs(a) Maximal discs

. . . . . in a shape and (b) the skeleton as the centers of all the maximal discs.
Index Terms—Binary images, image coding, mathematical

morphology, skeleton.
below) was originally proposed and developed independently
of mathematical morphology, and is sometimes still used today
| INTRODUCTION with no aid from the morphological theory (e.g., see [31]).
ATHEMATICAL morphology [5], [7], [24], [27], [28], On the other hand, the skeleton can be calculated entirely by
is a relatively new, rapidly growing, nonlinear theorythe basic operations of mathematical morphology [19], which
for image processing, based on set theory, and with a strangkes the skeleton a morphological representation, enabling
geometric orientation. It was developed by Matheron and Seimaage analysis using morphological tools.
in the mid 1960’s for describing the structure of materials by Blum [2] introduced the notion of skeleton by means of the
image analysis of their cross sections. Originally developed ffwllowing intuitive model: Suppose a given shape to be a grass
binary images, it was later (during the 1970’s) generalized féield, and suppose that at time= 0 its whole boundary is set
grayscale images as well [32]. For binary images, mathemat fire. The fire then propagates inwards at a constant speed.
ical morphology provides a well-founded theory for analysighe set of points at which the fire extinguishes is the skeleton
and processing, and, for grayscale images, it yields a nonlineérthe shape.
method for geometry-based processing. Since its intuitive introduction, the skeleton has been defined
The principal morphological representation for binary immathematically in a number of ways. The various definitions
ages is theskeleton[19], [21], [28]. The skeleton (defined are different characterizations of the “grass-fire” model, and
they provide (almost) equivalent results for continuous planar
_ , _ , shapes. A common definition of the skeleton follows [27].
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Skeleton

Fig. 2. Partial reconstruction of the skeleton representation. Simplification
of the shape is obtained by removing skeleton points related to maximal discs
with value smaller than a threshold. 2

Shape
a shape can be see_n as a thin, t_opology-prese_rvmg Carlca}:lilr.es. Skeleton redundancy. Only the pointsind b are not redundant in
of the shape that is useful for image analysis and pattqpii skeleton representation.
recognition. From an algebraic point of view, the skeleton
is the result of thedecompositionof a given set into the ) ]
superposition of simpler elements, selected from a predefined 0" @ny given shap&’, what is the smallest subset ff'; }
family of elements (discs of increasing sizes). That decorfiat exactly coversX? _ _
position provides an imageepresentationwhich consists of It i @ low-complexity solution due to the existence of a
the collection of skeleton points, together with the radii (ﬁlosed—form formula fo.r the skeleton calculation; it is subop-
the corresponding maximal discs. The reconstruction of tfg'al because it contains redundancy. _
original shape is obtained by the union of all the maximal The above serves as a framework to skeleton-based coding

discs. Since our main interest is in coding, this paper follov®d Pinary images. That framework has been applied not only
the algebraic branch. to compression of original binary images, like facsimile [4]

Let us elaborate on the skeleton representation and ®sSign-language sequences [21], but also in grayscale coding

application to compression. Following are the main algebraf¢hemes in which binary images are extracted from the original
properties of the skeleton representation. one. For example, in [25], the bit-planes of a grayscale image,

¢ The skeleton representation can be calculated by meangvngh are each a binary image, are coded by a skeleton

an algebraic closed-form formula, due to Lagjoul [19] decomposition. Another approach, which gained interest in

(see also [21] and [27]), which is reviewed in Section IIr.ecent years, is to use the skeleton to code the segment

e The skeleton provides a decomposition of the originC nt%usr]s in the context of segmentation-based coding [3], [6],
shape into features (discs) of different sizes, which ¢ n] ' . . .
S B K However, the compression rates achieved until now by
be seen as components in different “scales.” The small-

est maximal discs can often be considered as “detai gssless coding of the skeleton are only comparable to (and

whereas the largest ones can often be considered as‘d'[ rgeUmes even worse than) other simpler methods, such as

main (coarse) structure. This provideshimrarchical or chain coding, quadtree decomposition, or run-length/Huffman

o ; . coding, applied directly to the original image. This is in spite
pyramidalinterpretation to the skeleton representation. .
A : y 5 . "the fact that the structure of the skeleton has been extensively
e Simplified (morphologically “lowpass” filtered) versions

of the original shape are obtained by partial reconstru%t—Udied and generalized in recent years [14], [21], [25}-{29],
. ; . and several different coding schemes of the skeleton have been
tions from the skeleton representation (see Fig. 2). ried [3], [4], [21]
The skeleton representation has the following undesired chary,, his pap')er, we present a number of theorems introduced
acteristics. recently by the authors in [16] (see also [18]) concerning
¢ It usually containgedundant pointsthat is, many skele- properties of thediscrete skeleton representation of binary
ton points can be discarded and still the original shap@ages. These properties, being new, are not used by previous
can be fully reconstructed (see Fig. 3). The redundagieleton-coders, and this is reflected in their unsatisfactory
points usually form long, often undesired, branches in thsrformance. By taking these properties into account, one can
skeleton. Mathematical characterization of the redundagither considerably improve the previous schemes, or design
points can be found in [13], and methods for redundan@fficient new ones.
reduction are proposed in [13], [15], [21], and [22]. One such new coding scheme, originally proposed by the
* Unlike other binary image representations (e.g., chajuthors in [17] and [18], is also presented and compared to
code and quadtree), it is not a self-dual representatiqsther algorithms. Computer simulations indicate that, typically,
because the skeleton df“ (the complement ofY) is  the proposed coding scheme substantially improves the coding
totally different from the skeleton ot (see [10] for rates obtained by one of the best previous schemes for skeleton
background on self-dual operators). coding, and is more efficient than coding the original image
The skeleton representation can be considered as a ldy- chain code, quadtree and run-length/Huffman methods.
complexity, suboptimal solution to the following problem: For facsimile images, it usually performs better than the MR
Problem 1: Let {F;} be the family of all discs (with all algorithm with ' = 4 (used in the Group 3 standard—G3),
sizes and positions). but, at this point, it is weaker than the modified modified read
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(MMR) algorithm (used originally in the Group 4 standard,
G4, only, and adopted later in G3) and the Joint Bilevel Image
Group (JBIG) standard [9].

This paper is organized as follows. Section Il provides a
theoretical background for the morphological skeleton repre-
sentation. In Section Ill, some previous coding schemes for
the skeleton representation are briefly presented and compared.
Section IV reviews advanced concepts in mathematical mor- 1
phology that are required in the sequel. The new skeleton r
properties are then presented in Section V, and the proposed
scheme, using these properties, is presented in Section VI.
Simulation results are shown in Section VII, generalizations
and extensions are proposed in Section VIII, and Section IX

concludes the paper. Fig. 4. Skeleton calculation by morphological operations. The skeleton
points are the “vertices” of the regions < rB, for r > 0.

X@rB S =e

/><

Il. MORPHOLOGICAL SKELETON REPRESENTATION

This section provides a theoretical background on the mor-From the collection of skeleton subsets, one can obtain
phological skeleton representation. We assume reader farRff/fect or partial reconstructions of the original open shape
iarity with the basic binary morphological operators: dilations as follows:
erosion, opening, and closing (the definitions and properties XogB= U S.(X)@®rB )
of these operators can be found, for example, in [5], [18], and
[27]). Like in some of these references, the dilation, erosion,
opening, and closing of a binary s&tby a structuring element Whereg is a nonnegative scalar. Fr> 0, the skeleton subsets

B are denoted here b{ & B, X © B, X o B, and X e B, With radii smaller than and equal tp are discarded, and a
respectively. smooth version ofX (X o ¢B) is obtained. By setting = 0

in (2), one obtains a perfect reconstruction. That means that
A. Skeleton Computation via Morphological Operations the collection of skeleton subsefs,.(X)} can be considered

) as arepresentatiorof the original setX.
In [19] (see also [27]), Lan®&joul proved that the skeleton

S(X) of a topologically open shap¥ in IR? can be calculated
by means of binary morphological operations. In that conte
the setsS.(X), » > 0, each containing the centers of The above morphological skeleton representation has been

the maximal discs of radius, are calculated by means ofgeneralized several times in the last fifteen years with the

r>q

fo' Generalized-Step Skeleton

Lantugjoul’s formuld: purpose of extending the skeleton’s scope and decomposition
family. Serra presented a discretized version of Lajuul’s
S(X)=XerB-[(XerB)odrD] (1) formula in [27], where the decomposition elements approx-

where rB and drB denote, respectively, the topologicallyImate discs of discrete radii in a grid. In [21], Maragos

. . . . . _2and Schafer suggested the use of decomposition elements
open disc with radiug and a topologically closed disc with . . . .
A . - other than discs, by appropriately replacing the structuring
infinitesimal radiusdr, centered at the origin. The skeletonelement in the discretized Lasioul’'s formula. The theorems
S(X) is the union of all the set$,.(X), r > 0. ! '

In (1), the setX & rB represents the portion of the “grasé)re§ented in Section V below are related to a further general
- : : . u Ization, proposed by Maragos in [20, p. 191] (see also [23]).
field” not yet burned by the fire, at time= r, in the “grass- |, . . .

- . . . Itis referred to as thgeneralized-step skeletan [26], and
fire” model for the skeleton (see Section I). By increasing

one simulates the “fire propagation.” The §eX &7 B) odr B] its _deflmtlon is _rewewed below. Mo.re recent generallzauons_,
. . i . which are outside the scope of this paper, can be found in

represents the points at which the fire does extinguish at 4], 18], and [29]

time ¢t = r. Therefore, the difference between the above séfLsL’et B t;e an Euc.lidean spac@? in the continuous case

provides the skeleton points &t r. Since the morphological P '

2 5 H .
opening by a disc with infinitesimal radius excludes from (F)xr Z° in the discrete case), and 1pB(n)}ner be a series of

shape its protruding vertices, one concludes that the skele oHoIoglcaIIy open structuring elements & each containing

points with radius- of a shapeX are the protruding vertices eﬁZmoerrlquls?A?A c)>]r>ec7>veirr,] tlﬁte EZ:Toviienneivag(.enerate a family of
of the “fire front” X & rB (see Fig. 4). ") yneN g way.
The sets{S,.(X)},.~o are called theskeleton subsetsind A(0) = (0, 0)
the functionq(g) relating to e_ach_ skeleton poirtthe radi_us An+1)=An)®B(n), n=01,2 .
of the respective maximal disc is called tgaench function
[21], [27]. The family { A(n)} generalizes the concept of “discs,” used in
h . . . . . _ , $he definition of skeleton (Definition 1). The discrete parameter
From the strict mathematical point of view, (1) is an informal version o h h | f thedi f the di
the original Lantejoul’s formula. The reader can refer to [19] or [27] for the’? assumes ere.t e role 0 tmex 'L.JS of the discs. As ?‘n
original version. example,{A(n)} is the family of discrete squares of sides

3)
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2n+ 1 pixels, whenB(n) is set to the 3x 3-pixel elementary skeleton subset has its run-length coded by a Huffman or

square for all values of. an Elias code. The skeleton subsets are coded in decreasing
The generalized-step skeleton decomposition is defined tngler of n, providing a progressive transmissioischeme,
(adapted from [20], [23], see also [26]) since according to the partial reconstruction formula (5), if the

_ decoding is halted at a certain point, a simplified version of
Sn(X) =X © An) — [X © A(n)] o B(n), the original image is obtained. However, this coding method is
n=20,1,---. (4) inefficient because coding each skeleton subset independently

The setsS,(X), n € N, and (4) are considered as generaEoes not take into account the strong correlation that exists
NS ' etween them.

izations of the skeleton subsets and Lajdul’'s formula (1), . . .
respectively. As a consequence of the work in [29] (see alsnoTrt;? secpnd sc?emedptr)op(;ls‘;q n f[21||] CkOTS'StS Of. coding
[18]), it can be shown that indeed the subsgss (X)} are t eA Inary image formed by thenion 0_ all skeleton points,
composed of the positions (“centers”) of the maximal elements = U {5n}, plus the quench functiog(s), s € S. The
from the above family{ A(n)} inside the input imagel. The Skeleton imageS is coded as in the first scheme by run-
above result applies both to continuous and discrete inggR9th/Huffman or Elias code. The quench function is coded
images. by a Huffman code. Compared to the first scheme, it is faster
A reconstruction formula from the above skeleton, anal§inNce itrequires only one binary image to be scanned instead of
gous to (2), is given by scanning each skeleton subset separately. However, it does not
permit progressive transmission. It is also inefficient in terms
XoA(k)= U Sp(X) @ A(n) (5) of coding because it neglects any correlation that might exist
n>k between the position of the skeleton points and their quench

where k is a nonnegative integer. Perfect reconstruction Y@lues. Recently, this approach has been extended for coding
obtained fork = 0. That means that. like the originalsegme”t contours in the context of segmentation-based coding

skeleton subsets, the generalized-step skeleton subsets RLd33] (we elaporate on that in Sect.ion vill).
fully represent the original imag&’. We call the indices, _ 1he last algorithm we review here is proposed by Brand,
the “radii” of the skeleton points, by analogy to the originaf@n: and Algazi in [4], and consists of chain coding the

skeleton. For example, see Fig. 7(a), whedén)} is the same skeleton lines. The motivation is that, in the continuous case,
family of discrete squ:ares as definéd above. the skeleton lines of connected shapes are almost always

Instead of decomposingl into the union of maximal connected. To take advantage of this, it is proposed to code

discs,as in the original skeleton, a generalized-step skeletf}f Skeleton lines by an extended chain code, with symbols
decompose’ into the union of maximal elements of the mordndicating at each point if the related radius increases, de-
general increasing family{ A(n)}. Note that the family of creases or is unchanged, in addition to the direction of the
elements{ A(n)}, used in the above skeleton decompositioﬁ',eXt point, and with a header for each skeleton line indicating
is indexed bynatural numbers (0, 1; --). Therefore, we say the position and the radius of its first point. However, in the

that it is a “discrete-family” skeleton. On the other hand, noticliSCrete case, as opposed to the continuous case, the skeleton

that X and the shapes in the above decomposition family afB€S may have many gaps, and this considerably reduces the

not restricted to be discrete. They can be discrete (sez)in efficiency of chain coding. S _

or continuous (sets iiR2). A redundancy-reduction algorithm is usually pe_rform_ed in
order to remove most or all the redundant points in the

For simplification, we adopt from this point on the following e g
skeleton (see [13] and [21]). This improves considerably the

notation: o : sredy H
A efficiency of the first two schemes, but the correlation is still
Xn = XS An) (6) not taken into account. Moreover, the removal of redundant
Yot A Xpi1 ® B(n) = [X © A(n)] o B(n). 7) points breaks even more the continuity of digital skeleton lines,

and this reduces by a great deal the performance of the last

With the above notation, we can write the generalizestheme. On the other hand, artificially connecting the broken

Lantwgjoul’'s formula (4) in the following way: lines of the digital skeleton, by using dummy skeleton points

S _x _Yv (®) (aiming to improve the efficien_cy of the last scheme), increases

" " ntl the number of redundant points in the skeleton. A trade-off

between connectivity and redundancy removal is therefore
IIl. PREVIOUS CODING SCHEMES created and the preferred approach is not clear.

In this section we review some coding schemes for the
skeleton representation proposed in the literature, and briefly
discuss their characteristics. These schemes assume a constant
generator, i.e.B(n) = B, ¥ n, but they can be easily extended V.
for any generalized-step skeleton. The concepts of descendance, connectivity, reconstruction,

In [21], Maragos and Schafer propose two differerdand ultimate erosion are fundamental ones in this work.
schemes. In the first one, the skeleton subsgis n = They are reviewed in the following subsections, and some
0, 1, - --, are considered as binary images, usually very sparséthem are slightly modified for our needs. Also, this section
and therefore suitable for very low bit-rate coding. Thus, eadfitroduces part of the notation used in the sequel.

SOME ADVANCED CONCEPTS INBINARY MORPHOLOGY
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A. Descendance and Connectivity

here are adapted from [28, pp. 77-78]. -0

Definition 2—Direct Descendancd:et B be a structuring
element contained i. A pointy € E is a directdescendant .
of a pointzy € F, under the given structuring element, iff

y € {xo} ® B. 9)

Definition 3—DescendanceA pointy € E is adescendant
of a pointzy € FE, under the given structuring element, iff
there is a chain of points, each being a direct descendant of a G))
previous one, starting witlry and ending withy.

Definition 4—Connectivity:Two pointsz, andy are con-
nected (under a predefined structuring elenigniff each one
is a direct descendant of the other, undgri.e.,

o €{yt®B and ye€ {zo} & B. (10)

Intuitively, B defines aneighborhoodfor which descendance
and connectivity are considered. A point descends directly
from another if the former belongs to the neighborhood of the
latter; similarly for connectivity. If, moreover? is symmetric
(i.,e.,b € B= —b e B), theny is a direct descendant of, iff

zo is a direct descendant gf Therefore, in this case, direct (b)

descendance and connectivity are equivalent. Fig. 5. Reconstruction operator. (a) Two sdtandD, such thatD ¢ A and
(b) the result of reconstruction of from D, under an infinitesimal circular
structuring elemenB.

The definitions of descendance and connectivity presented =A ‘

B. Reconstruction Operator

Reconstruction is an important morphological operator,
which finds use in several applications, such as extraction
of connected components and filtering [30]. It should not be
confused with the@econstruction of the original imag& from
its skeleton representationpnsidered in the previous sections.
The reconstruction operator is defined as follows.

Definition 5—ReconstructionLet A, D be two sets inF,
such thatD C A, and B be a predefined structuring element.
The reconstructionof A from D under B, Red A, D}g,
returns the set of points im that descend from points in
D, underB_’ through a Path of p.0|nts strictly inl. Fig. 6. Discrete ultimate erosiofi§, of a setX composed of two connected

When B is asymmetricstructuring element, the reconstruccomponents. The succession of internal lines represents the erosiahsyf
tion of A from D is the collection ofconnected components»B, » > 0.
of A that contain points oD (see Fig. 5).

One way of performing the reconstruction operation iS by,mner, and.B denotes thex-fold dilation of B by itself.
recursively calculating @onditional dilation Specifically, if g4, eachn, the ultimate erosions of order, denoted/,,, of

84,8(D) £ (D& B) N A, and &% () denotes ther-fold 4 given setY c E, are defined by
application of64 g(-), then

Rec[4, D}p = lim &% (D). (11) U, 2XenB-RedXenB, [XonBloB}, (12

Notice that the notion of connected component depends on mewords, the ultimate erosions of orderare the points of

structuring elemenB chosen in the definition of connectivity. & nB that do not descend, undét, from the opening of
Ifitis too “big,” then relatively distant points can eventually be,, & nB by B ’ ’

considered connected. Therefakejs usually selected to be as Intuitively, the ultimate erosions, at each erosion step, mark

small as possible (an 8- or 4-pixel neighborhood, in the discr H.ae sconvex subregions” o that are about to disappear after
case, or an infinitesimally small disc in the continuous case ‘further erosion. Fig. 6 shows an example, withbeing a

disc. Notice that, although the original s&tis composed of

two connected components, the ultimate erosions consist of
In [27], the ultimate erosionsare defined in terms of athree connected components, because one of the components

decreasing family of erosionsX &nB}, wheren is a natural of X is a union of two “convex subregions.”

C. Ultimate Erosions
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383 1

@
1 |
2 ‘ 2. 2
Fig. 8. Skeleton and ultimate erosions of a portion of the coffee grains
8¢ 1 image. The ultimate erosions are the black skeleton points.
=
1,
calculated using the same decomposition family of squares as
0loto 0 in the first example.
\

V. NEW SKELETON PROPERTIES

(b) . : . .
_ S o o _ ~ Our main theoretical results concerning coding are presented
Fig. 7. (@) Binary image (indicated by the thick line), and its skeleton pointgy this section. They are relatednly to discrete-family
The numbers indicate the corresponding radii and (b) the ultimate erosions . . .
(the darker points). generalized-step skeleton representations (see Section 1I-B).
The theoretical results are new skeleton properties, divided

. ) , into two categories: 1) quench-function sampling and 2) de-
Here, we adapt the definition of ultimate erosions fo ministic prediction.

generalized-step families as well:

Definition 6: We define the ultimate erosiorg, as A. Quench-Function Sampling

U,2x, — Rec{ X, Yot1}om) (13) In this subsection, we show that, for @iscrete-family
' ' generalized-step skeleton, one can discard the “radius” of most
whereX,, andY,,;; are as defined in (6) and (7), respectivelypf the skeleton points from the representation, and still perfect

and reconstruction is possible. More specifically, the radii of the
B(n—1) n> 1 points that do not belong to the ultimate erosions can be

C(n):{ T ~— ' (14) discarded!
any structuring element n = 0. The following lemma helps us formulate the above assertion

in the form of a theorem.

The ultimate erosions as defined ab@e contained in the
Lemma 1: Let {S,,}nen be the skeleton subsets of a

generalized-step skeleton &f, when the same familyA(n)} .
is used in the computation of both the ultimate erosions ag&_nerahzed—s_tep skelgton, an_d gtbe the set of“skeletor]
the generalized-step skeleton. This is because the resulthQtS' carrying no |nformat|or1 about the radii; that is,
the reconstruction operation in (13) contains the ¥gt;, ° = U,30Sn- Then, the following holds:

which is subtracted fromX,, in the generalized Langjoul's Red(S U Yni1, Yatite U Un = X, (15)
formula (4).

In practice, the ultimate erosions are those skeleton poirftde above result is used in the proof of the next theorem, and
with maximal “radius” within each “convex subregion” of theleads to the corollaries presented below. The proof of Lemma
original shape. They are usually a small percentage of thds given in the Appendix.
skeleton. For examp|e, consider the image in F|g 7(a), andThe fOIIOWing theorem is the main result in this section.
its skeleton, calculated with a constant generdd¢n) = B, ~ Theorem 1:Let {S, },cn be the generalized-step skeleton
equal to a 3x 3 square structuring element. Fig. 7(b) showsubsets of a given imag&, and S 2 U,>o Sn- Let ulti-
its ultimate erosions, which belong in this caselfe and mate erosions be defined as in (13). ThEnis completely
Us only. Fig. 8 shows another example, where the skeletonrepresented by the se{é/,,},en @and S.
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In other words, the radii of the skeleton points that are
ultimate erosions, together with the position of all the skeleton
points, are sufficient for completely representing the original
set X.

Proof: We use induction in the following way.

1) If N is the maximal radius in the skeleton, th&n, =
Up. 3.3
2) For eachn, N > n > 0, once X,,+1 is known, the set
X,, can be calculated (see below), and ; ‘
3) the original imageX is equal to.X,. ‘ r_l_l_*
In order to obtain the second part of the above induction, ekt L
suppose thatX,,; is available. ThereforeY,, is also (@)
available. From the hypothesis, the skeletband the ultimate
erosions{U,,} are provided. ThenY,, is obtained from the
above by Lemma 1. [ |
The above proof is constructive; it provides a reconstruction L
algorithm for the original image from the resulting “sampled” - 2 e
skeleton. It consists of calculating at each stegvhich varies : 2
from N down to O, the sei,, according to (15). This can be
implemented in the following way (illustrated by Fig. 9).

1) An intermediate image, which we cal, is created
and initially set to the highest ultimate erosions, i.e., &
Z = Up. T
2) n«— N —1.(We assumeV > 1, otherwise, we trivially
obtain X = Uy.) ®)
3) Z «— Z @ B(n). At this point Z is equal toY,,11.
According to Lemma 1, for a symmetr@(n ), S,, is the
set of those connected componentssahat “touch” Z,
in addition to the ultimate erosionig, (see Fig. 9). a
4) Z —RedS U Z, Z}c(ny U U,. According to Lemma I ‘ >
1, at this pointZ is equal toX,,. Note that the points ‘ T
appended td7 in this step are those df,,. 3 6 1
5) If n =0, stop, andX = Z. Otherwisen «— n — 1. ‘ 1
6) Go to Step 3). ' e | 1

The above algorithm is also the heart of the coding scheme EH:} r»_%
proposed in Section VI. l

The following corollaries are a direct consequence of (15). ©

Corollary 1. If S. Is a skeleton point W!th radiua, then Fig. 9. Reconstruction algorithm from a skeleton with sampled quench
all the skeleton points that descend from it, un@&n), have fynction. The skeleton is the same as in Fig7.= 3, and the ultimate
also radiusn. erosion points are indicated by the dark gray pixels in (a). (a) Step 2

. ; i of the algorithm, (b) stem = 1 of the algorithm, and (c) step = 0 of the
Corollary 2. Suppose thaC(n) IS symmetric,i.e., ¢ € algorithm. In (a)—(c),Z is indicated by the thick line, and the points $h,

C(n) = —c € C(n). In this case, ifs is a skeleton point are those connected componentssofthe light gray pixels) that touckt,
with radiusn, then all the skeleton points in the connecteplus Ux (in this casel’o andUy are empty).

component to which it belongs [with connectivity being under o .
C(n)] have also radius:. stored. Similar results can be deduced for nonsymmetric

Corollary 2 can be seen as a generalization of [4, Prop. 3.8fcomposition elements, by means of Corollary 1. The above
which states that the radius (called “distance value” there) @pservations lead to an improved sampling scheme of the
each connected component is constant, when the structur‘?ﬁ%mh function (see Fig. 10). S
element is a 3x 3 square. _ orollary 3: A skeleton points has radiusn if and only

According to the above corollaries, not even all the ultimatd- 5 Pelongs toUy, or s & ¥,.41 but s descends front7, .,
erosion points need to have their radius stored! In the case”é‘perc(”)a through a path of pom_ts i, _
symmetric decomposition elements, Corollary 2 states that,]'® @bove corollaries are used in the coding scheme pro-
for every connected component in the set of ultimate erosiof9S€d in Section V1.
one needs to store only the radius afie point Note that o o
the set of ultimate erosions is usually a very small subsgt Deterministic Prediction
of the skeleton points, and, due to the above considerationThe second theorem on which the proposed scheme is
only a small percentage of them need to have their radibased is presented below. It perndeterministic predictiorof
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Fig. 10.

In the above examples, the dark points are the only ones in

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

since

[(Yoy1 @ A(n)) © A(n)] 0 B(n)
=XoAn+1)® BMn) e An) e A(n) © B(n) ® B(n)
={[XoA(n+ 1] A(n+1)} & B(n)

=[XoAn+1)]® B(n) =Yoy1. (18)

Therefore, since(-) is an increasing operation (it is com-
posed of basic morphological operations, which are increas-
ing), then any set/y, such that[Y,,+; & A(n)] C Zy C X,
satisfiesp(Zy) = Yp41. In particular,Zg = (Y11 U {p}) ®
A(n), p € S, satisfies it.

However, according to (16u(Zy) > {p}. and, therefore,

p € Y41, which contradicts thap € .5,,. []

Theorem 2 provides a test for each pqirih £ if it passes
it, i.e., if (16) holds, then its status as a skeleton point needs not
to be coded because it is known to both encoder and decoder
to be negative. On the other hand, if the test fails [(16) does
not hold], nothing can be said about the status of that point,
and it must be coded.

The above test is not viable, however, in practice, because
it is extremely computation-intensive. Luckily, a simplified,
much faster test is possible in many cases using the following
corollary.

Corollary 4: Let F' be a structuring elementpt containing

the origin (which we denote by), and satisfying:
[(£7 U {o}) @ A(n)] 0 B(n) D {o} (19)

andletp € E. If {p}&® ' CY, 1, thenp cannot belong t&,,.
In other words, one preselects a templateexcluding the

the respective skeletons that need to have their radius coded, accordin@gin, and usually containing a small number of points, such

Corollary 2. In the lower image, there are only four of these points.

that it satisfies (19). Since it is independent of the input image
X, the above selection is done “off-line,” and only once for

information aboutS,, from the knowledge about the previously? diven decomposition family A(n)}. During an “on-line”

coded points.

coding algorithm, the “prediction test” is performed, for each

Suppose a coding procedure where, at a certain step, R@Ntp, by placingF” “on” p, and examining the status of the
skeleton subset of order, S,, is to be coded, and thatPOINts indicated by the template.
Y,.+1 is known to both the encoder and the decoder. SinceThe points found in the above test are onlysabsetof

Sp = X, — Y41, it follows that there are no points df,

the “predictable points” found in the test of Theorem 2. In

inside the regiort,, 1. Therefore, the encoder does not nee@rder to findall the predictable points, a familys’} of all

to code thestatus(whether belonging, or not, t6,,) of the

the templates satisfying (19) should be defined, and the test

pixels insideY,;, and the decoder does not need to “look Corollary 4 must be repeated for eaéh This could also
for” skeleton points in that region at that moment. This resup Very computation-intensive. It turns out, however, (from

was used in the coding schemes proposed in [21].

It turns out that there is also a regiautsideY,, ., that
can be predicted not to contain skeleton points fr§m This
region can be characterized by the following theorem:

Theorem 2: Let p € FE. If the following holds:

(Va1 U {p}) @ A(n)] 0 B(n) O {p}

thenp cannot belong ta5,.
Proof: The proof is by contradiction. Suppose thats
in S,, and let us define the following operator:

(16)

p(Z) = [Z S A(n)] o B(n).

By definition of ¥,,41 in (7), p(X) = Y,41. In addition,
operatingp(-) on the setY,, ;1 & A(n) also results inY,, 41,

17)

simulations) that often a small subset {f;} is enough for
finding most of the predictable points. As an example, let
E =72, and consider a skeleton decomposition’df where
B(n) = B, ¥n, and B is a 3 x 3-pixel square structuring
elementin this case, Corollary 4 above far> 0 can assume
the following specific format.

Corollary 5: Supposer > 0, let (4, j) € Z?, and consider a
morphological skeleton with a 8 3-pixel squarestructuring
element. If any of the triplets

LG+ ke, 5), (6 7+ ko), (E+ ks, j+ks)}
{1 =k, g), (6,5 — k2), (i — k3, 5 —k3)}
LG+ ke, 5), (45 — ko), (i ks, j — ka)}
{1 =k, g), (4, 5+ k2), (i — k3, 5+ k3)}
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fast as the second one, and explores the connectivity present
in the skeleton like the algorithm by Brandt al As a
= consequence of the above, the proposed scheme gives better
FfiLaek) results in simulations for compression of binary images than
' the previous schemes (see Section VIl below).
o (K3 jE3) The coding scheme proposed here is restricted to discrete-
. family generalized-step binary skeletons, definedZén(dis-
kL) Yo+l crete binary images).

A. The Algorithm

After the generalized-step skeleton representation is calcu-
lated, the coding is performed in the same way as the decoding,
i.e., by reconstructing the original image.

Let N be the maximal radius. Initially, for each of the
ultimate erosiond/,,, 0 < n < N, a setU,, is formed, in
such a way that if a point belongs tol,, then it does not
descend from any other point iV, under C(n). If C(n)
is symmetric, the above means thdt contains only one
point of each connected componentf, underC(n). The
points in the set#/,, have their positions and radii coded. The
‘ choice of the specific coding method for the above operation is
| not critical, since the amount of information that is conveyed

, o - by the sets{U,} is usually a small fraction of the overall
Fig. 12. Example of deterministic prediction. Here= 1, and the thick line . . : . . .
indicatesY;,+1. The dark points cannot be skeleton pointsSin according information in the image. In our simulations, we coded the
to Corollary 5. pixels of U 2 \U,, Un and the corresponding radii, separately,
with an arithmetic coder [44].
for any integersky, ks, and ks in the interval[2, 2n + 1], is At this point, the main loop starts. At each stepwhich
contained int}, 1, then the pointé, j) does not belong t§,,. varies from its maximum valugy, down to zero, a scanning

The above triplets represent a subset of the fanjify} procedure is performed on tlternal boundarpf Y, and
related to the given squared structuring function. Fig. 11 showsU,,. The external boundary of a sdtis considered here to
an example of a pointz, j) that is predicted not to belong tobe the points outsidel that are direct descendants of points
S, in this specific case. Fig. 12 shows another example; im A, underC(n).
this casen = 1, andY,,+; is indicated by the thick line. The Only the external boundary has to be searched for points
dark points are those that can be predicted to belong to in S,, since the skeleton points ifi, are necessarily linked

Fig. 11. Point(z, j) predicted not to belong t6,, according to Corollary 5.

S1, according to Corollary 5. either to Y,,1, if it is not an ultimate erosion point, or to
U,,, otherwise, according to Corollary 3. Some points in the
VI. PROPOSEDCODING SCHEME above scan can be predicted not to belongsStp by the

The properties proved in Section V can be used to dfSt in Theorem 2; these points are skipped. The skeleton
ther substantially improve the coding schemes reviewed RRINts found in the above scanustbelong tos5,, (according
Section Ill, or to design new ones. For instance, the firl@ the reconstruction algorithm related to Theorem 1), and
scheme by Maragos and Schafer reviewed in Section €Il relative positions in the scanning path are coded by an
(coding of {S,}) could directly benefit from deterministic arithmetic coder. When a skeleton point is found, its boundary

prediction, whereas the second one (codingSoplus the is searched for other connected skeleton points in a recursive

quench function) could directly benefit from quench-functio@y. before the main scanning procedure goes on.
sampling. Another expected improvement for the first algo- [N Simulations, we found it very beneficial to useo
rithm would be to move all the nonultimate-erosion skeletoRfParatedaptive probability modeltor the arithmetic coder.
points from their original subsets to the same subset, §ug., A probability modelis the collection of the probab|I|t|e_s of
The algorithm by Brandet al. could be also improved by @Pp€arance of eac_h _Of the symbols to be coded_. hmaptive _
avoiding transmission of the radii of the nonultimate-erosidfi©d€l, the probabilities are updated after each input symbol is
skeleton points. However, despite the expected improveme‘fﬂfjecjz'_one adaptive model is used for coding the position of
the above modifications do not exhaust the benefits of tREINtS in the main scan, whereas the second adaptive model
new properties. is us_ed for coding the posmqn of points that are adjacent to
In this section, we propose a new coding scheme of tREEViously found skeleton points (local scan).
skeleton representation of binary images. It gathers most
of the advantages of each of the above algorithms, besidrgazs!n the empirical adaptive model used in this work, the probabilities for
fully benefiting from the new theoretical properties. It i%e symbols 6” and “1” are initially set to 0.5, and, during the coding

] . ) ' rocess, updated t@; /(o + 1), wherem,; — 1 is the number of previous
progressive like the first algorithm by Maragos and Schafeippearances of the symboli = 0, 1.
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The whole coding procedure is detailed in the following
algorithm.
1) Calculate the skeleton subseis, 0 < n < N. Form B
and code the set§,, as specified above. AZ)\,Z/}
2) ne—N-1Yy <0 22
3) Z — (Y, UU,). i B e S N P
4) p < (an external boundary point df). If there are no —t gﬁ@ %;DQ/@@
more external boundary points to scan, go to Step 9). :KIJ:\DQ)@‘@
5) Check (by means of Theorem 2)jifcan belong taS,, i
or not. If it cannot, go to Step 4. @
6) Send to the arithmetic coder &™if p is not a skeleton
point or a “1” otherwise. Use an adaptive probability
model. -
7) If a “1” was sent (i.e.,p is a skeleton point), then 1
Z — (Z U {p}). Otherwise, go to Step 4). 22}
8) Recursively, scan the direct descendant® d6r other @
connected skeleton points. Code nonpredictable points - @2 @ @ @
with “0” or “1” accordingly, but use a different adaptive - = s R e I
probability model than the one in Step 6). After the @@ ®®
whole connected component is scanned and coded, go
to Step 4). b)
9) I =0 Stop. Fig. 13. Redundancy reduction scheme for a skeleton calculated with a
10) n (n o 1)' Y"+1 —Z® B(n) Go to Step 3). 3 ?< 3-s.quared structu);ing element: (a) original skeleton; (b) reduced skeleton.
B. Discussion on Redundancy Removal TABLE |
As pointed out in Sections | and Ill, there are usua”y LossLESSCOMPRESSIONRATES, IN B/PIXEL, OF THE PROPOSEDSKELETON
. . . . CoDER AND OTHER KNOWN SCHEMES, FOR THEIMAGE “T OOLS’
redundant points in the morphological skeleton representation,
which can be removed (together with their radii) from the Coder Bits/pixel
representation without affecting its error-free characteristic. Runlength + Huffman 0.152
This should not be confused with the result, presented in this Quadtree 0.131
paper, that nonultimate-erosion points can have thadfii Chain-Code 0.091
Skeleton (proposed) 0.071

(only) removed from the representation, while keeping the
representation complete. Actually, the two kinds of points
(redundant and ultimate erosion ones) are not related, and thesghts, without affecting the connectivity. In this case, one can
can be redundant ultimate erosion points as well as nonultim@ighefit both from redundancy reduction and quench-function
erosion points which are not redundant. sampling.
Unfortunately, one cannot usually use both properties, i.e.,The redundancy reduction scheme consistsafuentially

to remove the redundant poingd the radii of nonultimate discarding points of the skeleton, with radius greater than zero,
erosion points. That is because the removal of redundast which at least three out of the four closest neighbors are
points may disconnect connected components of the skeletgRo skeleton points. Fig. 13 demonstrates the result of apply-
and the existence of the connectivity is crucial for provinghg the scheme in a simple image, where part of the skeleton

Theorem 1 presented here. This means that, after redundapglongs toS; and part toS,. Note that the representation
removal, Theorem 1 may not remain valid. For this reason, th@mains error-free.

theoretical results and the algorithm presented in the previous
sections a priori assume no redundancy removal. VII. SIMULATION RESULTS

However, there are two ways to modify the above S|tuat|on.The simulations of the proposed scheme presented here

One is to perform a redundancy reduction that preserves O csnond to a skeleton with a constant enerBior) — B
nectivity (e.g., the scheme presented in Section VI-C belov@. P 9 7

: . . ual to the 3x 3 squared structuring element centered at the
The second way is to appropriately add new points to the liSt _. . ) .
. . . : . origin. This particular structuring element was chosen so that
of ultimate erosions. Details and implementation of the latt

are outside the scope of this paper, but Section VIIl belo‘g,orqllary 5 and the special redundancy algorithm presented in
: . ; ection VI-C can be used. Moreover{0) = B.
briefly describes and comments about it. . .
Two sets of simulation tests are presented.
The first one compares the lossless compression efficiency
of the algorithm proposed in Section VI-A with some simple,
A particular redundancy reduction scheme, suitable onlyell-known coding schemes for binary images. The test image
for the skeleton with the 3« 3 square structuring element,is the 256 x 256-pixel “tools” (Fig. 14). The results, in
is proposed here. It removes a large fraction of the redunddpixel, of the comparison are presented in Table I. As seen

C. Coding with the Square Structuring Element
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TABLE I
FiLE Sizes oF CoMPRESSEDFACSIMILE STANDARD CCITT DOCUMENTS, OBTAINED BY THE PROPOSED
SKELETON ALGORITHM, COMPARED TO PREVIOUS SKELETON-BASED CODER AND EXISTING STANDARDS

CCITT | G3D1 dg G3D2 Proposed G4 Non-Progressive
Images | (MH) | Skeleton | (MR, K = 4) | Skeleton | (MMR) JBIG

#1 37423 28261 25967 20405 18103 14715

#2 34367 19058 19656 12681 10803 8545

#3 65034 49018 40797 37535 28706 21988

#4 108075 | 102848 81815 82194 69275 54356

#5 68317 52476 44157 40259 32222 25877

#6 51171 30658 28245 24615 16651 12589

#7 106420 | 112301 81465 83398 69282 56253

#8 62806 35965 33025 24815 19114 14278

programmed in standard C, encoding of the 25@56-pixel
tool image takes about 4 s, and its decoding about 2 s.

VIIl. GENERALIZATIONS AND EXTENSIONS

A. Grayscale Images

One continuation of this work deals with grayscale image
coding using a generalization of the morphological skeleton
representation to grayscale images (see [18, ch. 8]). The new
theoretical results, presented here for binary images only, are
extended there to the grayscale case, and the generalization of
the proposed coding scheme is described.

B. Geodesic Skeletons

As noted in the Introduction and in Section Ill, skeleton
representations have been investigated recently in the context
of segmentation-based coding (see [3] and [33]). In that
specific context, segment contours are represented by either
one of two special types of skeletons, called geodesic and
Fig. 14. Binary image “tools” (256« 256 pixels), used for the compressiongyerlapping skeletons. These skeletons assure that the contour
simulations. . .

lines that separate two adjacent segments are not represented

twice. In [3], coding schemes for the geodesic skeleton of
from the table, the proposed skeleton coder provides the beggment contours are considered. Unfortunately, neither the
compression (only 0.071 b/pixel). geodesic nor the overlapping skeleton are particular cases of

The second set of simulation tests examines the efficierit\e generalized-step skeleton, which means that, presently,
of the proposed skeleton coder in coding scanned documeifi® new properties and the coding scheme proposed here are
(fax), and compares it to existing standard coders [1], [9)ot directly applicable in that context. Therefore, as already
A previous skeleton-based scheme proposed in [4] (denogggested in [33], future research should also concentrate on
ds skeleton) is also compared. The eight CCITT facsimilextending the results of this work to geodesic and overlapping
standard test 2378 1728-pixel images, of documents scanne8keletons, so that the proposed algorithm can be used in coding
at 200 dpi, are losslessly coded by the proposed algorith@f. segment contours.

Table Il compares the size of the obtained coded files with the

results given in [1] and [4]. Comparison of our results to the- Redundancy Reduction

ds skeleton shows a substantial improvement in skeleton-basefhs mentioned in Section VI-B, the proposed algorithm
coding. At this point, it is still weaker than the most advanceghn support the removal of redundant points also if one
standards (G4, using the MMR algorithm, and JBIG), but it igppropriately modifies the list of ultimate erosions (see details
comparable to the G3 standard (using the MR algorithm, with [18, ch. 8]). The main idea behind this modification is to
K = 4), being usually more efficient than it (with exceptiorhave new skeleton points added to the ultimate erosions in
of the “hardest” images, numbers 4 and 7). order to compensate for breaks in connectivity. A comparison

Since the scanning in the algorithm is performen the between the original and the modified scheme brings us to
boundariesof the expanding sef only (Section VI-A), the the same connectivity versus redundancy tradeoff mentioned
encoding and the decoding procedures are relatively faist.Section Ill. The trade-off is expressed in this case by the
On a digital DECStation 5000 (approximately 27 MIPS)yumber of points in the “ultimate erosion list” versus the
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number of redundant points in the representation, and thet us prove (A.5).

preferred approach is still not clear. Forn = 0, (A.5) holds trivially, sinceXy = X (the original
image), ands C X.
IX. CONCLUSION Suppose, therefore; > 0. We have

Although very attractive from the theoretical point of view, X, ®Cn)=X,,® B(n—1)
sk_ele_ton-based _Coding of binary images has_ exhibited disap- (X, ®Bn—1)] N Sp1 =Y, N Sy =0 (A7)
pointing results in the past, since simpler coding schemes, like
chain coding of the original binary image, showed similar (3¥hich leads to
even better) compression results. On the other hand, the skele- . _
ton coding schemes used in the previous experiments have [Xn & C)] N Spoy =0, (A-8)
not taken into consideration the strong correlation existingimjlarly
between skeleton subsets. Actually, this correlation was not
properly characterized, and it was not clear how to efficiently X,®&Cn)]NSn=0 Vm<n (A.9)
use it. )

In this paper, new theoretically based properties charact&ferefore, sinces,, ¢ X,, for all m > n, we get
izing the above correlation are presented, and a binary image [X,®Cn)] N [X, US]=X,. (A.10)

coding scheme taking them into consideration is proposed.

The proposed binary coding scheme showed, in simulatiomhe conclusion is the validity of equation (A.5).
substantial improvement in the skeleton-based compressiomMNow, from (A.3) and (A.6), we geR,, U U/,, = X,,, which
efficiency, as compared to one of the best previous skelet@reves the Lemma.
based coding schemes, and better results than those presented
by the classical coding methods, including chain coding. When ACKNOWLEDGMENT
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