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Abstract—This work deals with fitting 2D and 3D implicit polynomials (IPs) to 2D curves and 3D surfaces, respectively. The zero-set of

the polynomial is determined by the IP coefficients and describes the data. The polynomial fitting algorithms proposed in this paper aim at

reducing the sensitivity of the polynomial to coefficient errors. Errors in coefficient valuesmaybe the result of numerical calculations,when

solving the fitting problemor due to coefficient quantization. It is demonstrated that the effect of reducing this sensitivity also improves the

fitting tightness and stability of the proposed two algorithms in fitting noisy data, as compared to existing algorithms like thewell-known 3L

andgradient-one algorithms.Thedevelopment of the proposedalgorithms is basedonananalysis of the sensitivity of the zero-set to small

coefficient changes and on minimizing a bound on the maximal error for one algorithm and minimizing the error variance for the second.

Simulation results show that the proposed algorithms provide a significant reduction in fitting errors, particularly when fitting noisy data of

complex shapes with high order polynomials, as compared to the performance obtained by the abovementioned existing algorithms.

Index Terms—Implicit polynomials, zero-set sensitivity, curve and surface fitting, stable fitting.
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1 INTRODUCTION

IMPLICIT polynomials (IP) have long been introduced for
fitting 2D curves and 3D surfaces [1], [2], [3] specified by

discrete data. The ability to efficiently describe complicated
boundaries using the coefficients of implicit polynomials is
attractive for applications in the fields of object recognition
and pose estimation [4], [5], [6], [7], [11], [12], [20], coding
[8], [19], boundary estimation from intensity/color images
[9], and computer graphics [10]. The existence of geometric
invariants [6], [7], [11] has made implicit polynomials
especially appealing for the first application.

While classical least-squares (LS) has a simple formulation
and is less complex than nonlinear methods [2], [3] for IP
fitting, both greatly suffer from numerical instability, espe-
cially for high order polynomials [13], [17]. The numerical
stability problem is basically the result of the extremely high
sensitivity of the zero-set of the IP (that is supposed to fit the
data), so that even tiny errors in the coefficients values, as
would be the case in any numerical solution, may result in
large fitting errors, as discussed in [17, Section IV]. This effect
could also be detrimental in coding applications where the
coefficients must be quantized.

To alleviate the sensitivity problem, while keeping the
simplicity of the LS approach, several algorithms have
recently been developed: The 3L fitting algorithm [13]
introduces additional constraints, which are generated from
the original data via expansion and shrinking. While
providing an improvement, it still suffers from excessive
sensitivity for high order polynomials needed when fitting
complex shapes. The gradient-one fitting algorithm [17]
provides further improvement by replacing the added data
sets, or level sets (obtained in 3L via expansion and

shrinking), by explicit differentiation and by constraining
the gradient vector along the zero-set to have a fixed (unity)
norm. In addition, anisotropic scaling is applied to thedata, to
normalize its size to unity, under a specific measure (instead
of the isotropic scaling done in the 3L algorithm). The ridge
regression (RR) fitting algorithm, also developed in [17],
applies regularization to the gradient-one algorithm to
alleviate the problem of spurious zero sets that typically
appear in IP fitting with high order polynomials (an effect
termed global instability in [17]).

The issue of spurious zero sets is also addressed in [8],
where constraints are added to the fitting problem that
provide a thin “guard strip” on each side of the object
boundary in which spurious zero sets may not appear. This
helps in reconstructing the object shape from the
IP coefficients (of special importance in coding applications).

Other recent works on fitting curves and surfaces by IPs
are presented in [14], [15], [16], [18].

In this work, we improve the performance of the gradient-
one algorithm (that addresses local stability in fitting eachdata
point) by constraining the norm of the gradient vector along
the zero-set to the sum of absolute values of the components
of the monomial vector (defined in the next section) at each
data set point. That is, unlike the 3L and gradient-one
algorithms, the norm of the gradient is not fixed, but is data
dependent—aiming to obtain a uniform maximal deviation
along the zero-set. This particular constraint is fulfilled by
what we denote as theMin-Max fitting algorithm. It is based
on using the sensitivity of the zero-set to small coefficient
errors to bound the maximal fitting error. A different
constraint is fulfilled by what we denote as the Min-Var
fitting algorithm. The same zero-set sensitivity function is
used to evaluate the variance of the fitting errors due to small
random coefficient changes, and the algorithm constrains the
norm of the gradient to the value of the root of the sum of
squaresof themonomial vector components, aiming toobtain
a uniform variance of the error at each point of the data set.

Simulation results, which are included in the paper, show
significant improvement in reducing fitting errors, not only
when the coefficients are quantized, but also when fitting
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both clean and noisy data of complex shapes with high order
polynomials, as compared to the gradient-one algorithm.

It should be noted that we do not address in this paper the
spurious zero-set phenomenon, and the treatments in [8], that
uses a “guard strip,” or the ridge-regression method of [17],
can be applied, in principle, to the proposed algorithms.

The layout of this paper is as follows: Section 2 provides
background material on polynomial fitting and outlines the
3L and gradient-one fitting-algorithms, from which the two
proposed improved algorithms evolved. In Section 3, the
zero-set sensitivity function to small coefficient errors is
defined and is used to bound the maximal fitting error and
to evaluate its variance. These results are then used to
analyze the fitting error characteristics for the 3L and
gradient-one algorithms. Section 4 describes the develop-
ment of the proposed fitting algorithms, including the
extension of the results to weighted errors and 3D fitting.
Section 5 presents simulation results obtained in comparing
the proposed algorithms with the gradient-one algorithm.
Section 6 summarizes and concludes the paper.

2 BACKGROUND

In this section, we provide a brief overview of implicit
polynomials fitting and of the 3L and gradient-one fitting
algorithms.

2.1 Fitting 2D Implicit Polynomials to Curves

The objective of polynomial fitting is to describe data points
(object boundary for 2D objects or surfaces for 3D objects)
by the zero-set of a polynomial. That is, the value of the
polynomial should be zero at the location of the data points.

The value of the polynomial at a point (x,y) can be
described as the product of two vectors—a parameter
vector (containing the polynomial coefficients), and a vector
of monomials. For a dth order polynomial, the monomial
vector is defined as:

�pp x; yð Þ ¼ p1 x; yð Þ; . . . ; pr x; yð Þ½ � ¼
x0y0; x1y0; x0y1; . . . ; xdy0; xd�1y1; . . . ; x1yd�1; x0yd
� �

;
ð1Þ

where r ¼ dþ 1ð Þ dþ 2ð Þ=2 and the parameter vector is
�aa ¼ ½a1; a2; . . . ; ar�.

The value of the polynomial described by �aa at location
x; yð Þ is:

P�aa x; yð Þ ¼ �aa �ppT x; yð Þ ð2Þ

The fitting problem is therefore to find a parameter vector �aa
that leads to a polynomial that best fits the data under a
criterion to be specified. The data set is assumed to contain
N points with coordinates xn; ynð Þ; n ¼ 1; . . . ; N . We denote
the zero-set of the polynomial defined by the coefficient
vector �aa as:

Z�aa ¼ x; yð Þ : P�aa x; yð Þ ¼ 0f g: ð3Þ

2.2 Overview of the 3L Algorithm

The 3L algorithm, developed in [13], is presented as a linear
algorithm for fitting an implicit polynomial to a data set.
The term linear is used by the authors to describe a problem
of the form �bb ¼ �aaM , where �bb is a known vector, M is a
known matrix, and the vector �aa needs to be computed. This
algorithm produces a result within one pass and no iterative
computations are required. This stands in contrast to

previous fitting algorithms [1], [2], which not only suffer
from numerical instability, but also require an iterative
solution, with unproven convergence properties.

The 3L algorithm is based on the construction of two
additional data sets (level sets) that are determined from the
original data set. The two additional data sets are constructed
so that one set is internal and the other is external, relative to
the original data set, with a distance d from it. The goal of this
algorithm is to find a polynomial that has a value of zero at
points belonging to the original data set and values of " and
�"at the internal andexternalpoints, respectively.Toachieve
this goal, the 3L algorithm uses a least-squares solution that
minimizes the sum of squared errors between the required
and actual polynomial values at those three data sets.

Considering the original data set points and the twoadded

sets (internal and external) as a single set of three, N points

one obtains 3Nequations in r variables (coefficients), r < 3N .
The goal is to minimize the total squared-error E:

E ¼
XN
n¼1

�aa�ppT xn; ynð Þ
� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Error w:r:t original points

þ
X2N

n¼Nþ1

�aa�ppT xn; ynð Þ þ "
� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Error w:r:t external points

þ

X3N
n¼2Nþ1

�aa�ppT xn; ynð Þ � "
� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Error w:r:t internal points

:

ð4Þ

The constant " is a small positive constant. The error E may

be written as:

E ¼ �ee �eeT ; ð5Þ

where the row vector �ee is given by,

�ee ¼ ð�aaM � �bbÞ: ð6Þ

The 3N-dimensional vector �bb and the r� 3N Matrix M are

defined by:

�bb ¼ �00 ��"" �""
� �

M ¼ M0 MEX MIN½ �
ð7Þ

with,

M0 ¼ �ppT x1; y1ð Þ . . . �ppT xN; yNð Þ
� �

MEX ¼ �ppT xNþ1; yNþ1ð Þ . . . �ppT x2N; y2Nð Þ
� �

MIN ¼ �ppT x2Nþ1; y2Nþ1ð Þ . . . �ppT x3N; y3Nð Þ
� �

:

ð8Þ

The vectors �"" and �00, making up the vector �bb, are constant
row vectors of length N with elements " and 0, respectively.

Assuming that r < 3N (overdetermined problem), a
feasible least squares (LS) solution for the problem of
obtaining �aa that minimizes E in (5) is:

�aaLS ¼ �bbMT MMT
� ��1

: ð9Þ

The parameter vector �aaLS is the best parameter-vector (in

the LS-error sense) of a polynomial whose zero-set approx-

imates the location of the original data set, and whose

values on both sides of the original data set (at distance “d”)

are approximately �" (positive on the inside and negative

on the outside—in the above construction).
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2.3 Overview of the Gradient-One Algorithm

This algorithm is presented in [17] and besides the different
way the data set is standardized (normalized by anisotropic
scaling [17]), it is basically a modification of the 3L algorithm
by which the operation of shrinking and expansion of the
original data set is replaced by explicit differentiation. Such a
modificationwasalso considered in [8], [18]. That is, thenorm
of the polynomial gradient vector along the zero-set is
approximated in the 3L algorithm by the slope "=d. Based
on considerations relating to the sensitivity of the zero-set to
small changes in the coefficient values, this norm is
constrained in [17] to unity. Yet, another difference is that
the authors in [17] propose tominimize amodified version of
the squared error function, by adding aweight factor � to the
gradient dependent terms (equivalent to weighting by � the
two right terms in (4), in the case of 3L).

Based on the above discussion, and since practical values
of � are close to 1 (see, for example, Fig. 4 in [17]), we denote
the gradient-one algorithm for the particular value of � ¼ 1
as the modified 3L algorithm and we present below this
algorithm by casting the fitting error in the form of (6). This
will simplify and facilitate the exposition of our proposed
algorithms in the sequel.

We have mentioned earlier that the gradient-one algo-
rithm applies first anisotropic scaling to the data set in order
to standardize (or normalize) it. This is basically a preproces-
sing operation thatwedonot consider here to bepart of either
themodified 3L algorithm or any other algorithmwe discuss
below. In otherwords,we assume that the data set thatwe are
dealing with has been standardized in some way and the
comparison of the performance of the different algorithms
assumes the same data normalization.

2.3.1 The Modified 3L Algorithm

Since the zero set is supposed to fit the data set and the
gradient vector is perpendicular to the zero set, we need to
bring the polynomial gradient at the location of each data
point to the direction of the line locally perpendicular to the
data set near each data set point (see Fig. 1). According to
the gradient-one algorithm its norm is constrained to unity.

The components of the polynomial gradient are given by:

d

dx
P�aa x; yð Þ x¼xn;y¼ynð Þ

�� ¼ �aa �ppTX xn; ynð Þ
d

dy
P�aa x; yð Þ x¼xn;y¼ynð Þ

�� ¼ �aa �ppTY xn; ynð Þ;
ð10Þ

where the vectors �ppX xn; ynð Þ; �ppY xn; ynð Þ denote the deriva-
tives with respect to x and y, respectively, of the monomial
vector, defined in (1), at data point xn; ynð Þ.

In Fig. 1, the angle relative to the x axis of the
perpendicular vector to the data set at xn; ynð Þ is denoted
by �n. It is also seen that, in order to calculate �n, we fit a
regression line to the points in the neighborhood of the data
point xn; ynð Þ under consideration.

Note that using a line that fits several points about each
data point, helps in combating noise or small perturbations
in the data. It also alleviates effects that may be caused by
singularities in the data, like abrupt slope changes or
relatively large gaps in the data.

The vectors �vv ¼ v1; . . . ; vN½ �; �ww ¼ w1; . . . ; wN½ � (whereN is
thenumberofpoints inthedataset)containtheelementsof the
perpendicularvectors for eachof thedata setpoints.Eachpair
of elements vn; wnð Þ in �vv; �ww; is a unit vector pointing in the

direction that is locally perpendicular to the data set at each
point n (i.e., to the straight line approximation).

Having estimated �n from the data set, we can calculate
the components of the vectors �vv; �ww; at each data point from
the relations:

wn

vn
¼ tg �nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n þ w2

n

� �q
¼ 1

)
) wn ¼ sin �nð Þ

vn ¼ cos �nð Þ: ð11Þ

The values of �bb and M in (9) determine the value of the
polynomial and its gradient. In order for the gradient of the
polynomial to be perpendicular to the data set and have a
unity norm, and to keep the requirement that the value of
the polynomial at the location of the data points be equal to
zero, �bb and M become:

�bb ¼ �00 �vv �ww
� �

M ¼ M0 MX MY½ �;
ð12Þ

where,

M0 ¼ �ppT x1; y1ð Þ . . . �ppT xN; yNð Þ
� �

MX ¼ �ppTX x1; y1ð Þ . . . �ppTX xN; yNð Þ
� �

MY ¼ �ppTY x1; y1ð Þ . . . �ppTY xN; yNð Þ
� �

:

ð13Þ

The LS solution in (9) can now be used with the above
expressions for �bb and M.

3 ZERO-SET SENSITIVITY FUNCTION

As demonstrated and discussed in [17, Section IV] (although
mainly for a 1D polynomial), the stability problem in fitting a
high order polynomial to data emanates from the high
sensitivity of the zero-set to small changes in the values of the
polynomial coefficients.

We examine now, therefore, how small changes in the
coefficient values affect the location of a point on the zero-
set. Since the zero-set is continuous, we cannot measure the
distance between two points on it before and after a
parameter change. We define therefore the change in a zero-
set point (d�zz) as the distance between an original zero-set
point, �zz ¼ zx; zy

� �
, and the closest point on the new zero-set,

obtained after the change in the parameters.
Let’s define a sensitivity matrix function at a zero-set

point by the following 2� r matrix:

S�zz
�aa x; yð Þ ¼ d�zz x; yð Þ

d�aa
: ð14Þ

This function expresses the relation between small changes
(errors) in the coefficients and small changes in the location
of zero-set points. The change in the location of a zero-set
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point �""Z x; yð Þ ¼ �""X �""Y½ �, resulting from a small change in the
parameters ���a ¼ ½�a1 . . . �ar �, is the product of the error
components with the above sensitivity matrix:1

�""Z x; yð Þ ffi �SS�zz
�aa x; yð Þ���Ta : ð15Þ

3.1 Zero-Set Sensitivity Function in the Normal
Direction

Small changes in the position of zero-set points along a
tangent direction move zero-set points back into the zero-
set. Therefore, for the purpose of evaluating zero-set
changes, it is sufficient to examine changes in the direction
that is perpendicular (normal) to the zero-set. We denote by
u x; yð Þ the component of d�zz x; yð Þ that is locally perpendi-
cular to the zero-set (see Fig. 2):

u x; yð Þ ¼ �zz x; yð Þ � rP�aa x; yð Þh i; ð16Þ

where, a � bh i denotes the inner-product between a and b,
rf x; yð Þ denotes the gradient of f at x; yð Þ, and P�aa x; yð Þ is
the value of the polynomial (determined by �aa) at location
x; yð Þ. Therefore, the sensitivity function of interest here is
given by the vector �SSu

�aa x; yð Þ ¼ du x;yð Þ
d�aa and denotes the

relation between changes in the zero-set, in a locally
perpendicular direction to the zero-set, and changes in the
coefficient vector.

A key point is to observe that this function can be written
as a product of two independent parts:

�SSu
�aa x; yð Þ ¼ duðx; yÞ

dP�aa x; yð Þ
dP�aa x; yð Þ

d�aa
: ð17Þ

The right-hand part of the product in (17) quantifies the
change in the value of the polynomial at x; yð Þ due to a small
change in the parameter vector. This part is a vector (has an
element for each of the elements in �aa). The left-hand part
quantifies the deviation of the zero-set point, in the direction
perpendicular to the zero-set, due to a small change in the
value of the polynomial at x; yð Þ. This part is a scalar.

We next evaluate each part of the sensitivity function in
(17) separately, beginning with the left-hand part. The
deviation in the location of a zero point in a direction locally
perpendicular to the zero-set, due to a change in the
parameter vector, is described in Fig. 2.

For small changes in the parameter vector, the ratio
between the position error in the perpendicular direction,
du and the change in the value of the function at point x; yð Þ
is the inverse of the gradient magnitude of P�aa x; yð Þ:

du

dP�aa
x; yð Þ ¼ 1

rP�aa x; yð Þk k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@P�aa x;yð Þ

@x

� 	2
þ @P�aa x;yð Þ

@y

� 	2
r : ð18Þ

The right-hand part of the sensitivity function in (17),
dP�aa x;yð Þ

d�aa , can be directly calculated from (2) (i.e., using

P�aa x; yð Þ ¼ �aa �ppT ðx; yÞ, where �pp x; yð Þ is the monomial vector).

The result is:

dP�aa x; yð Þ
d�aa

¼ �ppðx; yÞ: ð19Þ

Using (18) and (19), the sensitivity function in (17) can now
be written as:

�SSu
�aa x; yð Þ ¼ �pp x; yð Þ

rP�aa x; yð Þk k : ð20Þ

3.2 Zero-Set Fitting Error Bound and Variance

Having obtained (20), we use it to obtain a bound on the
maximal fitting error and the value of the error variance, at
each data point, assuming small changes in the coefficients.

The error in the direction perpendicular to the zero-set,

"u x; yð Þ is:

"u x; yð Þ ¼ �SSu
�aa x; yð Þ � ���Ta ¼ �pp x; yð Þ

rP�aa x; yð Þk k
���Ta ¼

Pr
k¼1

pk x; yð Þ�ak

rP�aa x; yð Þk k :

ð21Þ

For a given point x; yð Þ on the zero set, the maximal error is

bounded by:

"u x; yð Þj j ¼

Pr
k¼1

pk x; yð Þ�ak
����

����
rP�aa x; yð Þk k �

Pr
k¼1

pk x; yð Þj j � �akj j

rP�aa x; yð Þk k

� �max

Pr
k¼1

pk x; yð Þj j

rP�aa x; yð Þk k ;

ð22Þ

where, �max ¼ max �akj jf g.
When components of the parameter error vector are

independent random variables with zero mean, the var-
iance of "u x; yð Þ can be calculated by:

var "u x; yð Þð Þ ¼
var

Pr
k¼1

pk x; yð Þ�ak

 �
rP�aa x; yð Þk k2

¼

Pr
k¼1

pk x; yð Þð Þ2var �akð Þ
� 	

rP�aa x; yð Þk k2
: ð23Þ

Thus, when all the error components have the same

variance (var �akð Þ ¼ �2
� , like when all the coefficients are

quantized with the same word length—in bits), we obtain:

var "u x; yð Þð Þ ¼ �2
�

Pr
k¼1

p2k x; yð Þ

rP�aa x; yð Þk k2
: ð24Þ

Since these properties were derived using first order

approximation of the polynomial value, they are only valid

when the coefficient errors are small.
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1. This is a first order Taylor expansion approximation. The accuracy of
the approximation depends on the magnitude of the error components.

Fig. 2. Location of a zero-set point before and after a small change in the

coefficients.



3.3 Sensitivity Analysis of the 3L and Gradient-One
Algorithms

In Section 3.1, we analyzed the sensitivity of the zero-set to
small changes in the coefficient values. This analysis holds
for points on the zero-set of the implicit polynomial.

When the fittingof an IP to thegivendata is good, thevalue

of the polynomial at the data points is close to zero. Thus,

instead of examining the sensitivity at points on the zero-set,

the sensitivity may be examined at the data points. This

substitution allows the evaluation of the maximal error

resulting from small coefficient changes without having to

find the zero-set of the fitting polynomial. Of course, this

substitution should be made only when the fitting is

sufficiently tight. Therefore, assuming that the 3L algorithm

produces tight fitting, the error for each data set point n is

bounded by (22).

The expansion and shrinking operations used by the

3L algorithm (when done very tightly about the original data

set) is equivalent to differentiation of the polynomial.

According to the 3L algorithm, constant values of the

polynomial (�") are required at a fixed distance d from the

data set. This implies a requirement (or constraint) for

constant derivative values in the direction perpendicular to

the data set, leading to a constant gradient value near the data

set points: rP�aa xn; ynð Þk k ¼ "
d ; n ¼ 1; 2; . . . ; N (assuming that

the ratio is a good estimate of the gradient). For the gradient-

one (or modified 3L) algorithm, the gradient norm is

determined by explicit differentiation and is constrained to

unity.
Thus, the maximal error at each data point is bounded

for the above two algorithms by:

"u xn; ynð Þj j � �max

rP�aa xn; ynð Þk k
Xr
k¼1

pk xn; ynð Þj j

¼ �maxc
Xr
k¼1

pk xn; ynð Þj j;
ð25Þ

where the constant c is equal to d=" for the 3L algorithm and
c ¼ 1 for the gradient-one (and, hence, also for the modified
3L) algorithm.

It is clear from (25) that both the 3L and gradient-one

algorithms yields different error bound values at different

data points, depending on the values of the monomial

vector �pp xn; ynð Þ components at each data point. In the next

section, we derive two algorithms that aim to produce

either a constant error bound value (Min-Max algorithm) or

a constant variance (Min-Var algorithm), at all the data

points, and consequently achieve improved performance.

4 IMPROVED FITTING ALGORITHMS

In this section, we use the results of the last section to

construct improved fitting algorithms. Our goal is to obtain

a polynomial with a better zero-set fitting stability than the

3L and gradient-one algorithms. That is, lower sensitivity to

both coefficient quantization and numerical computation

errors. Numerical stability is a known problem when high

order polynomials are used for fitting, as typically needed

for fitting complex shapes. As could be expected, the lower

sensitivity to coefficient changes improves also the fitting to

noisy data, as we demonstrate in Section 5.3.
In order to obtain an optimal solution to the fitting

problem, one needs first to define an optimization criterion.

We are interested here in obtaining a coefficient vector �aa

that produces a polynomial with two properties: 1) best fit

to the data (i.e., P�aa xn; ynð Þ ¼ 0), 2) minimal deviation of the

zero-set due to small changes in the coefficients.
Using the error bound in (22) with a maximum

coefficient error of �max, we look for a polynomial that
minimizes �max

Pr
k¼1 pk xn; ynð Þj j= rP�aa xn; ynð Þk k at each data

set point.

The first requirement above also implies that the tangent

direction of the polynomial along the zero-set equals to the

tangent direction of the data for each of the data set points.

This is because the gradient of the polynomial is perpendi-

cular to the zero set, leading to the requirement:

@P�aa x; yð Þ
@y

,
@P�aa x; yð Þ

@x
jðxn;ynÞ ¼ tgð�nÞ; ð26Þ

where �n is the angle of the local perpendicular to the data

set about point n located at xn; ynð Þ—see Fig. 1.
Since no data point has priority over any other point

(if no error weighting is used), we can limit the maximal
fitting error, due to changes in the coefficients, to
a constant value by requiring that the value of
�max

Pr
k¼1 pk xn; ynð Þj j= rP�aa xn; ynð Þk k would be the same (a

constant) for all the given data points, i.e., for
n ¼ 1; . . . ; N . Since the value of this constant does not
affect the optimization, we require the following:

rP�aa xn; ynð Þk k ¼
Xr

k¼1

pk xn; ynð Þj j for n ¼ 1; . . . ; N: ð27Þ

To further clarify this point, note that scaling the value of

the gradient norm by a factor K > 1, may appear as causing

a reduction of the value of the bound in (22). However,

since this corresponds to scaling all the polynomial

coefficients by K, this factor will cancel out by the necessary

increase of the value of �max by the same factor, so as to keep

the relative error in the coefficients the same.
The LS solution for the requirements presented above

can be calculated within the framework of the solution

described in Section 2.3.1. Modifying (13) according to the

requirement in (27) yields:

M0¼ �ppT ðx1;y1Þ ... �ppT ðxN ;yN Þ
� �

MX¼ �ppTXðx1;y1Þ

,Pr
k¼1

jpkðx1;y1Þj ... �ppTXðxN ;yN Þ

,Pr
k¼1

jpkðxN ;yN Þj

" #

MY ¼ �ppTY ðx1;y1Þ

,Pr
k¼1

jpkðx1;y1Þj ... �ppTY ðxN ;yN Þ

,Pr
k¼1

jpkðxN ;yN Þj

" # ð28Þ

which upon substitution into (12) yields a solution that we

denote as the Min-Max solution.
Using the same formulation, we can consider a minimum

variance criterion that would minimize the variance of the
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error.Modifying (13) as shown in (29) and substituting in (12)

yields a solution that we denote as theMin-Var solution.

M0¼ �ppT x1;y1ð Þ ... �ppT xN ;yNð Þ
� �

MX¼ �ppTX x1;y1ð Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
k¼1

p2
k
x1;y1ð Þ

r
... �ppTX xN ;yNð Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
k¼1

p2
k
xN ;yNð Þ

r" #

MY ¼ �ppTY x1;y1ð Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
k¼1

p2
k
x1;y1ð Þ

r
... �ppTY xN ;yNð Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
k¼1

p2
k
xN ;yNð Þ

r" #
:

ð29Þ

The above formulation was done with the assumption
that all the data points have the same priority—in terms of
goodness of fit. Prioritizing the data points (i.e., giving
different weights to the errors at different points) yields the
following weighted cost function:

EW ¼ �eeW �eeTW ¼ �aaM � �bb
� �

WWT �aaM � �bb
� �T

; ð30Þ

where W is a 3N � 3N diagonal weighting matrix whose
diagonal elements are the relative weights. The weighted-
LS solution is:

aWLS ¼ �bbWWTMT MWWTMT
� ��1¼ �bbW 2MT MW 2MT

� ��1
:

ð31Þ

Note that the above improved fitting algorithms for
2D curves, can be simply extended to 3D surfaces by
applying the following modifications: 1) All coordinates are
given in 3D. 2) Perpendicular vectors are now calculated as
normals to tangent surfaces (instead of normals to lines).
The pertinent equations are presented in Table 2.

4.1 Summary of Fitting Algorithms

Tables 1 and 2 summarize the imporved fitting algorithms,
presented in this section, for fitting 2D and 3D curves.

5 SIMULATION RESULTS

In this section, we present simulation results of compar-
isons made between the modified 3L fitting-algorithm (i.e.,
the gradient-one algorithmwith � ¼ 1, see Section 2.3) and the
proposed Min-Max and Min-Var algorithms, derived in
Section 4. Simple scaling in each axis is used to normalize
the 2D data used in all experiments to the range [-1,1].

5.1 Sensitivity to Coefficient Changes

A convenient way to demonstrate the characteristics of the
sensitivity function of the zero-set to coefficient changes, for
the different algorithms, is via quantization of the poly-
nomial coefficients. Quantization of the coefficients with a
given number of bits gives only a single instance of the
coefficient error vector and does not allow a statistical
analysis of the error properties. We use, therefore, uni-
formly distributed random noise that is added to the
polynomial coefficients to simulate the effects of quantiza-
tion or small random coefficient changes. The results of this
test would indicate which algorithm yields better fitting
results under small coefficient changes.

The shape shown in Fig. 3, having 252 data points, was
used to test and compare the modified 3L, Min-Var, and Min-
Max algorithms in this experiment. Random noise, having a
uniform distribution in the range corresponding to the least
significant bit (LSB) in the binary representation of the
normalized coefficients to the range of [-1,1], was generated.
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The same noise vector is added to the coefficients obtained
for each of the examined fitting algorithms. The statistics of
the results obtained from using 100 independent noise
vectors for each of three different noise levels—correspond-
ing to quantization by 9 bits are shown in Table 3.

For each algorithm two error measures are considered:

ERMS ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

e2n

vuut ; EMAX ¼� max e1; . . . ; eNf g; ð32Þ

where the error en for each data point is the distance
between the nearest point on the polynomial zero-set and
the data point xn; ynð Þ and where N is the number of points
in the data set.

In the table, the mean and variance of EMAX and the
value of ERMS over all data points and 100 error vectors are
given for the three examined algorithms.

By examining this table, it is evident that both theMin-Max
and Min-Var algorithms result in significantly lower fitting
errors, in terms of both error measures, than the modified
3L algorithm. This could be expected from the sensitivity
considerations discussed in the previous two sections.
Similar conclusions were obtained for a wide range of noise
levels and different polynomial orders. The two proposed

algorithms demonstrate similar performance, although the
Min-Max algorithm appears to result in somewhat lower
error-measure values, on average, in the above experiment.

5.1.1 Graphical Demonstration

In this section, we graphically demonstrate some of the
results obtained in the above experiment.

In the first (left) column of Fig. 3, the values of the
sensitivity function, for each point of the data set, are shown
for each of the eighth order polynomials that were obtained
by the three examined fitting algorithms. Since the error
values are computed in the direction perpendicular to the
desired zero-set, the value of the error bound in (22) at each
data point is plotted in Fig. 3 as a vector that is
perpendicular to the zero-set, with a length proportional
to the value of bound.

It is clear from the results demonstrated in Fig. 3 that the
modified 3L algorithm is the most sensitive of the three
examined algorithms and that the proposed Min-Max and
Min-Var algorithms are significantly better.

It is noted that the fitting by the proposed algorithms is
much better even without coefficient noise (left column). As
a matter of fact, the increased sensitivity in using an eighth
order polynomial by the modified 3L algorithm results in a
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gap in the zero-set (upper left side of the original shape)
and the shape is not fully fitted.

The middle column in Fig. 3, shows the fitting results
obtained for a single instance of random noise added to the
coefficients, equivalent to quantization with a 9-bit quanti-
zer. The fitting with the modified 3L algorithm completely
breaks down, while the proposed algorithms perform well.

In the third column, we show an overlay of 20 fittings by
each of the algorithms when 20 independent random noise
vectors are added to the coefficients (in Table 3 the statistics is
given for 100 independent noise vectors). Again, the
advantage of the proposed algorithms over the modified
3L algorithm is clearly seen.

Asmentioned earlier, the spurious zeros sets seen in Fig. 3
are a common phenomenon, and usually do not affect the
utilization of the IP coefficients in some tasks, like object

recognition. If shape reconstruction is required, it is im-
portant that these sets do not intersect with the main zero-set
that’s fitting the data. We do not address here this issue. We
refer to possible future work on this subject in the summary.

5.2 Fitting Noisy Data

Four of the shapes that were used for comparing of the
effects of noise in the data on the fitting results are shown in
Table 4.

Since the results obtained with theMin-Max andMin-Var
algorithms are quite similar, only the results of the compar-
ison between the modified 3L and the Min-Max fitting
algorithms are shown below. The IP order used to fit each
shape in the figures below was selected as the lowest order
that provides a reasonably good fit for both the original and
the noisy data. The noisy data was generated by adding
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TABLE 3
Comparison of Error Statistics for the Modified 3L, Min-Var, and Min-Max Fitting Algorithms

The results shown are for an eighth order polynomial and a noise level corresponding to 9-bit coefficient quantization. The statistics is based on 100
independent error vectors.

Fig. 3. Sensitivity and fitting errors for the modified 3L, Min-Var, and Min-Max algorithms, using eighth order polynomials. Rows: (a) Upper: Min-Max
algorithm, (b) Middle: Min-Var algorithm, and (c) Lower: Modified 3L algorithm. Left column: Coefficients are not quantized. Center column: Single
instance of added noise (ninth LSB). Right column: Overlay of 20 fittings using uniform random noise (ninth LSB) to the coefficients.



colored noise to the original data. The noise is produced by
generating a random sequence, with independent uniformly
distributed elements in the range ½� 1

4 :
1
4�, and convolving this

sequence with an averaging filter of length 9.
Besides a visual examination of the results shown in Figs. 4

and 5, the comparison is also based on the values of the
maximal and RMS errors, EMAX and ERMS , respectively, as

defined in (32), for each fitted shape. As in Section 5.1, the
error at each data point is defined as the distance of the data
point to the closest zero-set point. Note again that shapes are
normalized to the range [-1,1] by simple scaling in each axis,
before the fitting algorithms are applied.

The values of these error measures, obtained for the
original and two noisy versions of each shape, and for each of
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TABLE 4
Shapes Used in Fitting Algorithms Comparison

(Data of these shapes was obtained from the Laboratory for Engineering Man/Machine Systems (LEMS), Brown University.)

Fig. 4. Fitting results for theMin-Max (M-M) andModified-3L (M-3L) algorithms: Rows: (a) “Butterfly” fitted withMin-Max, (b) “Butterfly” fitted withM-3L,
(c) “Bear” fitted with Min-Max, and (d) “Bear” fitted with M-3L. Columns: Left-Original data, Center and Right-Two different instances of noisy data
(colored noise).



the examined two fitting algorithms, are shown in Tables 5
and 6.

It is clear from the fitting results shown in the figures and
the numerical results shown in the tables, that for all the
four shapes, the Min-Max performs consistently better than
the modified 3L algorithm, both visually and in terms of the
error measures used. We reached the same conclusion after
applying the Min-Var algorithm to these shapes, as well as
when we applied both proposed algorithms on additional
shapes (not shown here because of lack of space).

It is important to note that the advantage of the proposed
algorithms over themodified 3L algorithm is more significant
when the shape is more complex, like the “Bear” and
“Airplane” shapes, i.e., when high order IPs are needed to
fit the data. In particular, for these two shapes, a reduction of
about 50 percent in errormeasure values is obtained for some
of the noisy versions shown.

In this work, we address only the issue of contour fitting
and do not perform any object recognition task. Yet, it
should be stressed that stable fitting is an important factor
in any recognition task. It doesn’t appear that recognition
can be done at all if the fitting breaks down, as it happens in
Fig. 4, row (c), center column, where the modified 3L
algorithm is failing to fully fit a noisy version of “bear.”

Furthermore, even if the fitting doesn’t break down, an
aspect related to recognition performance is the change in

the polynomial coefficient vector due to noise in the data (a
form of “global stability”). To quantify this aspect, we have
measured the normalized squared-norm of the difference
between the coefficient vectors obtained for the clean data
and noisy data (obtained by adding a small amount of
colored noise), for the examined three algorithms. We have
found in our simulations that, on average (over 20 noisy
data sets for each shape, and several shapes), the min-max
algorithm performed best, with the highest reduction in the
measured normalized squared-error in the coefficient
vector being obtained for the more complex shapes. For
example, a reduction by a factor of 1.4 was obtained for
“bear” and a factor 2 for “pliers.”

The combination of improved local fitting by the proposed

algorithms (for both clean and noisy data)—especially for

complex shapes, and the typically smaller change (error) in

the coefficient vector due to data noise, points to a better

potential of these algorithms in the various tasks IPs are used

for, than provided by the modified 3L algorithm.

6 SUMMARY AND CONCLUSIONS

In this paper, we introduce an approach for stable fitting by
implicit polynomial of 2D curves and 3D surfaces that is
based on reducing the sensitivity of the fitting polynomial
zero-set to small coefficient changes.
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Fig. 5. Fitting results for theMin-Max (M-M) andModified-3L (M-3L) algorithms: Rows: (a) “Airplane” fitted withMin-Max, (b) “Airplane” fitted withM-3L,

(c) “Pliers’ fitted with Min-Max, and (d) “Pliers” fitted with M-3L. Columns: (1) original data, (2) and (3), noisy data (colored noise).



Based on a sensitivity analysis for 2D polynomials, we
develop two fitting algorithms of 2D curves, denoted Min-
Max and Min-Var. The two algorithms exhibit similar
performance. The Min-Max algorithm attempts to mini-
mize a bound on the maximal error due to small
coefficient changes. The Min-Var algorithm, minimizes
the error variance due to coefficient errors. We also show
how the proposed algorithms should be modified to
support the fitting of 3D data.

The main difference between the proposed algorithms
and the known 3L and gradient-one algorithms is that
instead of constraining the value of the norm of the gradient
vector of the IP along the zero set to a fixed value, each of
the proposed algorithms constrains this norm to different
appropriate values that vary along the zero set in a data
dependent manner, such that the fitting error measure used
by each algorithm is uniform along the data set.

In simulations, we compare the proposed algorithms
with the modified 3L algorithm (a particular instance of the
gradient-one algorithm), in fitting several different object
shapes. We demonstrate that the proposed algorithms
provide not only better fitting for both the original data
and for noisy versions obtained by adding colored noise,
but also reduce, on average, the coefficient vector error due
to noise in the data, particularly for complex shapes, which
typically require high order IPs for proper fitting. The
improved fitting and the reduced sensitivity to noise in the
data could prove useful in all the applications that use
implicit polynomial fitting, such as object recognition,
contour coding, computer graphics, CAD and others.

Future work should consider the issue of spurious zero-
sets observed in the simulations, by combining the regular-
ization technique (ridge-regression) of [17], or the “guard-
strip” of [8], with the algorithms proposed in this work.
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