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Abstract—Closed-form expressions for a new set of 3D rotation invariants that

are linear, quadratic, and angular combinations of implicit polynomial (IP)
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1 INTRODUCTION

IMPLICIT polynomials (IPs) are used for efficient representation of
2D curves and 3D surfaces specified by discrete data. The ability to
efficiently describe complicated boundaries using IP coefficients is
attractive for object recognition [1], [2] applications, and might also
be used for pose estimation [3].

Over time, different algorithms for fitting IPs to the data were
developed. Early fitting algorithms were nonlinear and iterative
[4], and often failed to represent or recognize relatively compli-
cated objects. A more recent fitting algorithm is the 3L [5], which
solves a Least Squares (LS) problem. However, this algorithm
provided coefficients which were not stable enough for object
recognition [6]. Another advanced algorithm [7], [8] used a
topological approach to obtain IPs which have a simply connected
zero set. State-of-the-art fitting algorithms are Gradient-One [6],
Min-Max [9], Min-Var [9], and Ridge-Regression [6] (enhanced for
the 3D case over the 3L technique in [10]); all of them apply a linear
LS solution to the fitting problem as well. The main difference
between them and 3L is that these algorithms have additional
requirements on the fitting which improve the stability of the IP
coefficients and alleviate the problem of spurious zero sets that
typically appear in fitting of high-order IPs. Compared with older
nonlinear iterative algorithms [4], the LS algorithms have a much
better performance in both representation and recognition tasks,
with lower complexity. These representation and recognition
abilities were previously tested mainly for 2D IPs [9], [11], [12].
As the main research topic of this work is 3D recognition, rather
than fitting, we chose to focus on the Gradient-One algorithm only.

Recognition of 3D objects is important in various fields, such
as medical imaging, robotics, automatic security systems, etc.
Previous approaches usually required pose estimation for the
alignment of the new object representation with each of the
dictionary object representations. In many approaches, there is
also a need to identify matching key points between two object
representations. These stages have high computational cost since
accurate pose estimation and matching key points are usually
iterative (such as the Iterative Closest Point [13] for small angle
differences, or the Tensor Voting approach [14]), and each

iteration performs calculations for many data points. Also, finding
the correct correspondence between key points is very difficult,
and its results are usually not accurate enough. An example of
such an approach can be found in [15], which needs a large
number of spin images (2D histograms around object surface
points), from different viewpoints on the object surface, in order
to perform surface matching.

The recognition in [1] and [2] is based on nonlinear low-degree
(3-4) IP fitting algorithms, which are less stable. In addition, their
object recognition performance was obtained for relatively small
data sets. In [6], the classifier is based on Gradient-One, which is
more stable, but the authors use a single high-degree (6-10) IP
fitting, and results are reported for 2D recognition only.

In this work, we use a tensor representation of IPs in order to
derive a set of bn2c þ 1 rotation invariants which are linear
combinations of the IP coefficients, as well as dn2e quadratic and
dn2eðdn2e�1Þ

2 angular rotation invariants, from an IP of degree n. We
develop new sets of 3D IP rotation invariants (linear, quadratic, and
angular), as well as closed-form expressions for these invariants.
Following the 2D IP recognition method Multi-Order and Fitting
Error Technique (MOFET) [11], [12], we propose a classifier based
on these 3D IP rotation invariants, as well as on 3D IP fitting errors,
2D IP rotation invariants and fitting errors (from the most
descriptive 2D projection), and the eigenvalues of a Principal
Component Analysis (PCA) decomposition. The suggested classi-
fier uses various IP degrees (both for 2D and 3D) in order to utilize
both the stability of low-degree IPs and the descriptiveness of high-
degree IPs. Our proposed recognition approach is model-based, as
the classifier features are combinations of IP coefficients and the IP
is a parametric representation of the object surface. We explore the
results of our classifier using the Gradient-One fitting algorithm.
We apply the proposed method to a database of rigid objects and
compare our recognition results with pose estimation methods
followed by IP fitting [3] and with the Shape Spectrum Descriptor
(SSD), which was adopted by the MPEG-7 standard [16], [17].

This paper is organized as follows: Section 2 describes the
rotation invariants derivation. Section 3 deals with preprocessing
and feature extraction. Section 4 describes the classifier design.
Section 5 describes our recognition results and compares them
with other methods. Section 6 summarizes and suggests future
research directions.

2 ROTATION-INVARIANT EXPRESSIONS FOR 3D
IMPLICIT POLYNOMIALS

In order to avoid pose estimation in the recognition process, we
need to use expressions that are invariant to rotation. Such IP-
based expressions have been developed for the 2D case, both
analytically [18] and using symbolic computation [1], [19].
Additional 2D IP-based geometric invariants were developed in
[20], [21]. However, 3D IP-based rotation invariants were devel-
oped by using symbolic computation [1] only. These invariants
contain sum of high-degree products of IP coefficients. These
products may cause instability due to their high degree, and
therefore, we prefer the analytically derived invariants which we
will develop in this section for the 3D case, extending those
developed for the 2D case in [18].

2.1 Separation of an IP into Forms

A 3D IP:

fn x; y; zð Þ ¼
X

0�k;l;m;kþlþm�n
aklmx

kylzm ð1Þ

can be separated into homogeneous parts Hrðx; y; zÞ, r ¼ 0; . . . ; n,
where Hrðx; y; zÞ denotes a homogeneous ternary IP of degree r,
also called a “form” of degree r, and is defined as follows:
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Hr x; y; zð Þ ¼
X

kþlþm¼r
aklmx

kylzm: ð2Þ

Hnðx; y; zÞ is called “the leading form” of an IP of degree n. Note
that translations leave the leading form unaffected, but affect the
rest of the forms [3].

2.2 Derivation of Rotation Invariants Based on Tensor
Representation

Our proposed method for 3D rotation invariants derivation is
based on the pose estimation method of [3]. In this section, we use
the notation ðx1; x2; x3Þ, instead of ðx; y; zÞ, for convenience.

We start by briefly reviewing the tensor representation
suggested in [3] for pose estimation, and we will then use this
method for developing 3D rotation invariants.

For pose estimation purposes [3], it is more convenient to use a
tensor representation for each form:

Hn x1; x2; x3ð Þ ¼
X3

i1¼1

X3

i2¼1

. . .
X3

in¼1

si1i2...inxi1xi2 . . .xin ; ð3Þ

where ðsi1i2...in Þ1�i1 ;i2 ;...;in�3 is a symmetric tensor of order n, denoted
Sn. It can also be considered as an n-dimensional array with
3n entries. Each entry si1i2...in can be expressed by the form
coefficients:

si1i2...in ¼ aklm
n!

k!l!m!

; ð4Þ

where k, l, and m are the number of tensor indices (i1; i2; . . . ; in)
that are equal to 1, 2, and 3, respectively.

Given a tensor, a contraction with respect to two indices (e.g., i1
and i2) is defined as a new tensor of order n� 2:

s0i3i4...in ¼
X3

i1¼1

si1i1i3i4...in : ð5Þ

In other words, we set i2 ¼ i1, and sum over i1. A total contraction
of an even degree tensor gives a zero-order tensor (a scalar) which
is an invariant. For example, for a symmetric 3� 3 matrix (tensor
of order 2), the tensor contraction gives the trace of the matrix,
which is known to be an invariant under euclidean transforma-
tions (e.g., rotation).

The IP-based pose estimation suggested in [3] fits an even
degree IP with n ¼ 2p and extracts only the leading form
(Hnðx; y; zÞ) since this form is invariant to translation. In order to
find the intrinsic orientation of the IP, it performs ðp� 1Þ tensor
contractions on the leading form, resulting in a 3� 3 matrix
denoted by V ðHnÞ, whose elements are linear combinations of the
leading form coefficients.

Now, after the brief review of [3], we explain how to develop a
novel set of closed-form 3D rotation-invariant expressions. We
suggest adding a pth tensor contraction (i.e., a total of
p contractions for an IP of degree n ¼ 2p). This will result in a
tensor of order 0 which is the trace of V ðHnÞ. For example, for a
second degree form, we get:

V H2ð Þ ¼
a200

a110

2
a101

2
a110

2 a020
a011

2
a101

2
a011

2 a002

2
4

3
5: ð6Þ

We denote the 3D linear invariants by L3D;k, where k is the form
degree. The rotation invariant we get is

L3D;2 ¼ trace V H2ð Þ½ � ¼ a200 þ a020 þ a002: ð7Þ

The advantage of this method is the simplicity with which we
can derive an invariant from any even degree form, even for high
degrees. For example, for a fourth degree form, the rotation
invariant we get is

L3D;4 ¼ a400 þ a040 þ a004 þ 1
3 a220 þ a202 þ a022ð Þ : ð8Þ

In the general case of a form of degree n ¼ 2p, we developed a
general expression for the linear invariant obtained by p tensor
contractions of a form of degree n ¼ 2p:

L3D;n ¼ trace V Hnð Þ½ � ¼

¼
X3

in�1¼1

� � �
X3

i3¼1

X3

i1¼1

si1i1i3i3 ���in�1in�1 ;
ð9Þ

and, using (4), we get:

L3D;n ¼
X

k;l;m even
kþlþm¼n

k!l!m!

n!
� n=2ð Þ!
k=2ð Þ! l=2ð Þ! m=2ð Þ! � aklm; ð10Þ

where ðn=2Þ!
ðk=2Þ!ðl=2Þ!ðm=2Þ! is the number of times each tensor element

participates in the tensor contractions (the indexes are divided by 2
since the contraction sets each pair of indexes to be equal). Using
the tensor approach, we can derive the complete set of bn2c þ 1

linear invariants for an IP of degree n, one linear invariant for each
even degree form.

We now examine odd degree forms. Each odd degree form
n ¼ 2pþ 1, when represented as a tensor, can be contracted p times
until we get a first degree tensor (a vector). The squared magnitude
of this vector is invariant under rotation. In the same way, the
relative angles between these vectors (derived from different forms
of the same IP) are also invariant under rotation.

For a first degree form:

H1 x1; x2; x3ð Þ ¼ a100x1 þ a010x2 þ a001x3; ð11Þ

we get the tensor representation (no contraction is needed, p ¼ 0):

V H1ð Þ ¼ a100 a010 a001½ �T ; ð12Þ

and the squared magnitude of this vector is:

Q3D;1 ¼ V H1ð Þk k2
l2
¼ a2

100 þ a2
010 þ a2

001: ð13Þ

We denote the 3D quadratic invariants by Q3D;k, where k is the
form degree. For a third degree form, we get:

Q3D;3 ¼ V H3ð Þk k2
l2
¼ a300 þ

a120

3
þ a102

3

h i2
þ

þ a030 þ
a210

3
þ a012

3

h i2
þ a003 þ

a201

3
þ a021

3

h i2
:

ð14Þ

And the angle between a first degree form and a third degree
form will be:

�13 ¼ cos�1 V H1ð Þ � V H3ð Þ
V H1ð Þk kl2 V H3ð Þk kl2

" #
; ð15Þ

where f�g is the dot product between two vectors.
For an nth degree form (n ¼ 2pþ 1), we get:

V Hnð Þ ¼

X
k;l;m even;
kþ1þlþm¼n

akþ1;l;m

n!
kþ1ð Þ!l!m!

n� 1ð Þ=2ð Þ!
k=2ð Þ! l=2ð Þ! m=2ð Þ!X

k;l;m even;
kþ1þlþm¼n

ak;lþ1;m

n!
k! lþ1ð Þ!m!

n� 1ð Þ=2ð Þ!
k=2ð Þ! l=2ð Þ! m=2ð Þ!X

k;l;m even;
kþ1þlþm¼n

ak;l;mþ1

n!
k!l! mþ1ð Þ!

n� 1ð Þ=2ð Þ!
k=2ð Þ! l=2ð Þ! m=2ð Þ!

2
66666666664

3
77777777775
; ð16Þ

Q3D;n ¼ V Hnð Þk k2
l2
: ð17Þ

Using tensor representation, we get dn2e quadratic invariants
from an nth degree IP, one for each odd degree form. Therefore,
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we can also derive
dn2eðdn2e�1Þ

2 angular invariants (one between each

possible pair of odd degree forms).
Note that these are explicit expressions for the derivation of 3D

invariants, unlike the recursive derivation method given in [18] for

2D invariants. We can extend our explicit 3D invariants expression

for the 2D invariants computation as well, in the following way:

L2D;n ¼
X

k;l even;kþl¼n

k!l!

n!
� n=2ð Þ!
k=2ð Þ! l=2ð Þ! � akl; ð18Þ

and similarly also for the quadratic and angular invariants. In [18],

the suggested recursive scheme includes the calculations of the

same binomial coefficients as in our proposed method, but in

addition, in [18], it is also needed to invert a matrix of ðnþ1Þðnþ2Þ
2 on

ðnþ1Þðnþ2Þ
2 for the derivation of the invariants of a form of degree n.

Thus, we need fewer computations than the scheme given in [18]

for the 2D linear invariants. Note, however, that if we apply this

method in the 2D case, we get the same set of linear invariants, but

only part of the quadratic/angular sets described in [18].

2.3 Derivation of Rotation Invariants Based on
Trigonometric Expressions

In addition to the previous derivation approach, we now present

another derivation method, useful mainly when dealing with low-

degree IPs.
Every 3D rotation can be considered as three rotations, one

around each axis (x, y, and z) with angles �, �, and �, respectively

[22]. One of the 2D invariants derivation methods described in [18]

uses the 2D rotation matrix. Following the same approach in the

3D case will require proving that the expressions are invariant

under each of the above rotations. For example, for a second

degree IP, the original polynomial is:

f2 x; y; zð Þ ¼ a000 þ a100xþ a010yþ a001zþ a200x
2þ

þ a110xyþ a101xzþ a020y
2 þ a011yzþ a002z

2:

After substituting the relations between x, y, z and x0, y0, z0 for a

rotation around z axis, and rearranging:

f2 x
0; y0; z0ð Þ ¼ a000|{z}

b000

þ � � � þ c2a200 � csa110 þ s2a020

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b200

x02þ

þ s2a200 þ csa110 þ c2a020

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b020

y02 þ � � � þ a002|{z}
b002

z02;

where c ¼4 cos � and s ¼4 sin �. Obviously, we have the following

invariant:

L3D;0 ¼ b000 ¼ a000: ð19Þ

From examination of the new IP coefficients bklm and some

trigonometric identities, we find that after z-axis rotation, we also

get that:

L3D;2 ¼ b200 þ b020 þ b002 ¼ a200 þ a020 þ a002: ð20Þ

If we follow the same procedure for each of the rotation matrices,

we’ll see that (19) and (20) are still invariants. This is the same

linear invariant we obtained using the previously suggested

derivation method in (7). The complexity of the trigonometric

expressions grows considerably with the IP degree, and so the

rotation matrix together with the trigonometric identities is useful

only for low-degree IPs. We used this method for deriving two

more quadratic invariants; the first appears in (13) and the second,

which cannot be obtained using the tensor method, is (for the full

proof, see [23]):

Q3D;2 ¼ a2
200 þ a2

020 þ a2
002 � 2a200a020

� 2a200a002 � 2a020a002 þ a2
110 þ a2

101 þ a2
011:

ð21Þ

3 FEATURE EXTRACTION

3.1 Rigid Objects Database

The databases which we found available for 3D object recognition

performance evaluation are either synthetic databases (i.e.,

computer graphic models, such as [24]) or small real databases

(only a relatively small number of different objects, such as [25],

[26]). Therefore, we created a new objects database, with

acquisitions of 40 objects, each in nine different viewing angles.
This database was acquired using the equipment of the

Geometric Image Processing (GIP) lab at the Computer Science

Faculty of the Technion. The system is based on the “structured

light” technique [27]. The projector’s hardware is manipulated so

that it triggers the camera. The camera frame rate is 30 Hz, and

each 3D image is produced from a sequence of 12 consecutive

camera frames of 12 different projected patterns. Therefore, the

system acquires 2.5 images per second. For the acquisition, the

object is placed on a stand, with a black background behind it.

After the acquisition, each 3D frame is resampled on a uniform

xy grid of 320� 240 pixels, then filtered in order to smooth noise

artifacts, and the background is cropped. The final number of data

points per object in our database is �12;000 on average. Each pixel

has three coordinates and represents a point in the 3D space.
We acquired 40 different objects, each was placed on the

rotatable stand and acquired in nine consecutive positions. The

difference between two consecutive positions is �12 degrees, and

we acquired five frames in each position of each object. A possible

application for such a setup is a factory production line with

various products which need automatic sorting. The database

objects appear in Fig. 1. Nine different positions of the object “fox”

are shown in Fig. 2.

3.2 Preprocessing

Before the feature extraction, we have to apply some preprocessing

to each object frame.
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3.2.1 Translation and Scaling

For translation invariance, we locate the center of mass of the data
points at the origin [23].

For scale invariance, as in [12], we chose the scaling factor to be
the 75th percentile of the distances of the data points from the
origin (small changes in the exact percentile hardly affect the
results [11]). In other words, we sort the distances of all the data
points from the origin, and choose the element that is just larger
than 75 percent of the other elements as the scaling factor S75%. We
then use it to scale each coordinate.

3.2.2 2D Projections

In order to obtain more features using IPs, we used 2D projections.
We used only projections on the main planes (xy, xz, and yz) in
order to avoid high-complexity calculations. If the object is
acquired from a few viewing points, our experiments show that
these projection planes are satisfactory. If we examine 2D
projections that are obtained from several different orientations
of a 3D object (e.g., Fig. 3), they are connected by a nonlinear
projective transform. However, since the viewpoint differences
between consecutive orientations are relatively small, there are two
possible approaches: The first, to consider the projective transform
as an affine transform, and transform each projection into its
“mother-shape” [12]. The disadvantage of this approach is that
when we deal with very similar objects, along with affine
invariance, we lose some of the object properties that distinguishes
it from other similar objects. The second approach is to consider
this transform as some additional model error that was added to
the contour, and perform the IP fitting and invariants calculation
without using the “mother-shape.” In our experiments, the second
approach has shown better results, and so these are the results
which we demonstrate in Section 5.

For the rigid objects, the most descriptive projection is the
projection on xy. The two other projections (xz and yz) were not
very informative, and had very noisy contours. After the 2D
projection, we used morphological operators for holes filling and
then extracted the 2D contour. An example for xy projection of
three different positions of the object “fox” is shown in Fig. 3.

3.3 Selected Features

3.3.1 Linear Invariants

After the preprocessing, we fit IPs of degrees 2, 4, and 6 to the 3D
objects, and to their 2D xy projection, using the Gradient-One
fitting algorithm. By this approach, we follow the MOFET
technique, introduced for 2D contours recognition using IPs [12].
Using the IP representation, we separate the IP into forms, and
from each even degree form, we compute the linear rotation
invariants described in Section 2 using the explicit expressions that
we have developed in (10) and in (18). In both 3D and 2D cases, we
have bn2c þ 1 linear invariants for an IP of degree n.

3.3.2 Quadratic Invariants

For the 3D case, using the same IP representation, we also derived
the two quadratic rotation invariants described in Section 2 (see
(13) and (21)). The rest of the 3D quadratic invariants, and all of
the 3D angular invariants, are not used as features, as they are not
stable enough. The quadratic and angular invariants in the 2D
case [18] are also not stable enough [12], and therefore, were not
used as features.

3.3.3 Implicit Polynomial Fitting Errors as Features

Following the MOFET technique [12], we also suggest using the IP
fitting error as a feature. Therefore, for each IP fitting degree, after
solving the IP fitting LS problem, we calculate the fitting error for
each data point and use the 75th percentile of the errors vector as a
feature describing the fitting error.

3.3.4 Eigenvalues of 3D PCA

We obtain three more features: the eigenvalues of PCA on the
original data points, which are obviously invariant to rotation. In
the 3D case, we perform an eigenvalue decomposition of the 3� 3
data scatter matrix. We sort the eigenvalues in decreasing order
according to their magnitude, and use them as additional features.

Table 1 summarizes the features that were chosen. The exact
features were chosen based on their robustness and informative-
ness. The total number of features is 31.

4 RECOGNITION

4.1 Classifier Design

We chose a classifier that is based on the probability density
functions (PDFs) of feature vectors. We assume that the feature
vector has a Gaussian distribution. Each multivariate Gaussian
PDF is estimated from feature vectors belonging to one or more
different views of an object from the dictionary. Thus, each
dictionary object is represented by one or more PDFs. In all of the
simulations, we used the Gradient-One fitting algorithm.

We divide the objects database into learning and testing data
sets in the following way: We have nine different positions for each
object (� 12 degrees difference between consecutive positions,
denoted by #1-#9), and for each position, we have five different
consecutive frames (in order to gather statistics on the features
sensitivity to noise during the learning process). We use even
positions for learning and odd positions for testing. Note that, in
order to use the proposed method in an operational system,
�15 positions per object are needed for learning in order to
recognize the object from every viewing point. Also note that this
is a worst-case scenario: We learned each object from positions
with a difference of �24 degrees between them (#2, #4, #6, and #8),
and then we tested our performance using the most different
viewing positions that we could acquire—in the middle between
the angles of the learning positions (#1, #3, #5, #7, and #9).

4.1.1 Learning Positions

For each learning position of each object, we do the following: Each
of the five frames is perturbed 10 times by adding colored Gaussian
noise (which, according to our analysis [23], is the acquisition noise
model). We used an averaging filter of 11� 11 (normalized so that
the sum of its square coefficients is equal to 1) to filter white
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Gaussian noise with standard deviation of 0.01. The parameters
were chosen empirically according to our noise model analysis.
Thus, we have 40 � 4 � 5 ¼ 800 real frames in the learning data set,
synthetically increased 10 times to obtain 800 � 10 ¼ 8;000 frames.
For each of the 8,000 perturbed instances, we perform all of the
preprocessing stages from the previous section and calculate the
feature vector v.

Let us denote each object by Ok , k ¼ 1; . . . ; 40, and each learning
position (view) by Vn, n ¼ 2; 4; 6; 8. We examined several ap-
proaches for the classifier design [23]. The best approach, according
to our experimental results, is estimating the parameters of a PDF
from learning position pairs of each object. For each object, we used
the 50 � 2 ¼ 100 feature vectors of positions #2 and #4 for the
estimation of one PDF, the 100 feature vectors of positions #4 and
#6 for the second PDF, and the 100 feature vectors of positions #6
and #8 for the third PDF. We used the feature vectors of each
learning position pair in order to compute a vector of means �, and
a covariance matrix � for construction of their PDF:

P ðv=Ok; VnÞ ¼
1

2�ð Þd=2j�j1=2
eð�

1
2ðv��Þ

T��1ðv��ÞÞ; ð22Þ

where k ¼ 1; . . . ; 40, n ¼ 2&4; 4&6; 6&8, and in case we use the
entire feature vector, we have d ¼ 31.

In this approach, we have 40 � 3 ¼ 120 different PDFs for the
description of 40 objects (three PDFs per object). This approach
assumes that positions with very different viewing angles of the
same object have very little in common, and therefore, it is better to
learn similar positions together, but to separate the learning of
different positions.

4.1.2 Testing Positions

We calculate the same feature vector for each of the five frames of
each object testing position, resulting in 40 � 5 � 5 ¼ 1;000 real
frames in the testing data set. We then calculated the probability
of it originating from each of the objects. The object which resulted
in the highest probability was chosen as the best recognition for the
test vector.

We want to compare the probabilities of each object Ok in each
position combination Vn, given the observation v:

P Ok; Vn=vð Þ; k ¼ 1; 2; . . . ; 40; n ¼ 2&4; 4&6; 6&8: ð23Þ

Using Bayes rule, we get:

P ðOk; Vn=vÞ ¼
P ðv=Ok; VnÞP ðOk; VnÞ

P ðvÞ ¼

¼ P ðv=Ok; VnÞP ðVn=OkÞP ðOkÞ
P ðvÞ ;

ð24Þ

where P ðvÞ is the same for every k, and we assume that
P ðOkÞ ¼ 1

40 , and P ðVn=OkÞ ¼ 1
3 . Therefore, we can ignore these

expressions in the probabilities comparison and compare only
P ðv=Ok; VnÞ, k ¼ 1; . . . ; 40, n ¼ 2&4; 4&6; 6&8.

5 EXPERIMENTAL RESULTS

5.1 Synthetic Simulations

As we mentioned in Section 3.1, we have a difference of about
12 degree between consecutive positions (i.e., in each testing
position, around 12 degrees/360 degrees ’ 3 percent of the closest
learning positions’ data points are missing), and an acquisition
noise model of colored Gaussian noise with a standard deviation of
about 0.01.

In order to analyze the sensitivity of the entire recognition
process, we performed the following two synthetic simulations:

The first: In the learning stage, we used colored Gaussian
noise, as described in Section 4.1.1, each time with a different
standard deviation (0.01-0.05). Then, in the testing stage, we
added to each testing frame of each object, colored Gaussian noise
with the same standard deviation as in the learning stage. The
recognition results appear at the top of Fig. 4. Note that the noise
was added in addition to the acquisition noise which already exists
in the testing frames.

The second: The learning stage was the same as described in
Section 4.1.1. Then, in the testing stage, we chose various
percentage values of points (1-10 percent) to eliminate from each
testing frame of each object (a central point was randomly selected,
then an appropriate number of closest points were eliminated).
The results appear at the bottom of Fig. 4. Note that these data
points were eliminated in addition to the occlusion which already
exists in the testing frames.

It can be seen that, as the standard deviation of the noise or the
percentage of missing points becomes larger, the recognition
process performance is reduced relatively slowly.

5.2 Recognition Results

Table 2 shows the recognition results using different sets of
features. By IP-based features only, we refer to 3D/2D IP-based
invariants and fitting errors, and by 3D IP-based features only, we
refer to 3D IP-based invariants and fitting errors. It can be seen that
without the additional PCA features, the results are less good, but
we still manage to classify correctly almost 97 percent of the
instances. Note that, even without the 2D/PCA-based features, we
classify correctly over 96 percent of the instances. For comparison,
using the 3D PCA features only, resulted in correct classification of
only 74.2 percent of the instances.

5.2.1 Comparison with Other Methods

We compared our proposed method results with pose estimation
recognition results. The pose estimation methods we examined are
PCA- and IP-based tensor approaches [3]. In both cases, after the
rotation of the data points, we fit an IP and use the IP coefficients
as our features. We then use an l2 distance between feature vectors
for classification. The IP degree we chose is 4 (d ¼ 35), since in this
case, we use a single-degree IP, and higher degree IP coefficients
were less stable and showed poor recognition performance. Note
that our proposed invariants are combinations of IP coefficients, and
they were found to be useful even for IPs with degree larger than 4.
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Fig. 4. Analysis of the recognition process sensitivity to noise and occlusion.

TABLE 2
Results of Object Recognition Using Different Sets of Features:

Entire Feature Vector (d ¼ 31); IP-Based Features Only (d ¼ 28); 3D
IP-Based Features Only (d ¼ 16), and 3D PCA Eigenvalues Only (d ¼ 3)
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We used IP-based pose estimation with a second degree IP (i.e., the
second degree IP was used for pose estimation and then a fourth
degree IP was fitted and its coefficients were used as features). The
pose estimation results using Gradient-One appear in Table 3. It
can be seen that the PCA has a similar performance to the second
degree IP pose estimation. It can also be seen that our proposed
method results with d ¼ 31 (98.8 percent) are better than the PCA/
IP-based pose estimation methods.

We also compared the performance of the proposed method
with the SSD technique [16]. This technique was adopted by the
MPEG-7 standard for 3D descriptors and has a relatively low
complexity. We used a histogram of 25 bins for the descriptor (the
default for MPEG-7 is 100 bins, but its results were found to be a
little worse) and we also used the singular and planar descriptors
(i.e., we had the 25 bins plus the two descriptors, a total of
27 features). We used the l1 norm on the difference between the
feature vectors for classification. We implemented the SSD
technique in Matlab. Our implementation is based on [16] and
on the freely available MPEG-7 reference software [28].

The results of this comparison also appear in Table 3. It can
be seen that our proposed method has better performance. The
computational complexity of the methods is considered in the
next section.

5.2.2 Comparison of Computational Complexity

All three methods, our proposed method, pose-estimation-based
techniques, and the SSD technique, have similar computational
complexity. If we denote the number of object data points by N ,
then each of the stages of each method has a complexity of OðNÞ.
(The SSD stages are actually dependent on the number of triangles,
which in our databases is around 2N for an object with N data
points.) The constant that multiplies N is large in some stages
(such as the Least-Squares IP fit in our case and in the pose
estimation case, or the second degree explicit polynomial fit at each
point in the SSD case), but is difficult to estimate. Average running
times for the recognition of a single object, using a Matlab
implementation, appear in Table 4. The proposed method appears
to have a commensurate running time with the other two methods,
while presenting better results on the examined database.

6 SUMMARY AND CONCLUSIONS

In this work, we examined the recognition abilities of 3D IPs using
the Gradient-One fitting algorithm. We introduced new sets of 3D
rotation invariants (linear, quadratic, and angular), which are
based on IPs and their tensor representation and obtained closed-
form expressions for these invariants for every IP degree.

We also developed one more quadratic invariant based on IP
properties and trigonometric identities. After some preprocessing,
we followed the 2D IP recognition method known as MOFET [12]
and suggested the use of a feature vector that contains 3D IP
rotation invariants and fitting errors, 2D IP rotation invariants and
fitting errors (from a 2D projection), and the eigenvalues of a PCA
decomposition (total of 31 features). The feature vector included
invariants of several IP degrees (both for 2D and 3D) in order to
utilize both the stability of low-degree IPs and the descriptiveness
of high-degree IPs.

We designed a PDF-based classifier and showed that the 3D IP

invariants followed by fitting error approach has better perfor-

mance compared with pose estimation methods followed by IP

fitting [3]. We also found in our tests that our proposed method

outperforms the Shape Spectrum Descriptor technique [16], which

was adopted by the MPEG-7 standard for 3D descriptors.
Future work could consider other fitting algorithms, such as the

Ridge-Regression of [6], [10], or the Min-Max/Min-Var algorithms

of [9] and explore their recognition results with the newly derived

invariants. Another possibility is exploring the use of quaternions

[29] for the derivation of a full set of quadratic rotation invariants,

in a similar way to the use of complex representation in the 2D case

[18]. In addition, the proposed method could be examined for face

recognition tasks.
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