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Design of Finite Impulse Response Digital Filters 

Abstract-Most of the existing  literature  on  FIR  digital  fiters  is  con- 
cerned  with  linear-phase (LP) fiters. However, several papers have 
appeared on the subject of nonlinear-phase (NLP) fiiters,  mainly  pro- 
posing methods for designing minimum-phase filters,  or  approximating 
a desired phase response. In  this  paper,  an  investigation  is  made of one 
such method, based upon  a  selection of zeros  from  a prototype LP 
fiter.  It is  shown that with  respect to minimizing the order of a  filter 
subject to given gain response specifications,  this  is the  most efficient 
method  for designing FIR fiiters.  Coefficient  quantization error is 
analyzed for  fiters generated  by  this  method. A practical  comparison 
is given between the resulting  filter and  the corresponding  minimal 
order LP fiiter. It is shown that while most LP filters  can  be  imple- 
mented  more  efficiently  than NLP filters  by  taking into account the 
symmetry of their  coefficients, for filters  with very wide passband 
and for certain special purpose  fiiters such as CCD and those used 
for filtering  a  delta-modulated or ADPCM signal, an NLP implementa- 
tion is usually more  efficient. In addition,  an alternate design  algo- 
rithm is proposed for NLP filters which decreases ripple  magnitude. 
The  resulting fiters, while not of minimal  order,  can  be  efficiently 
implemented  by  decomposing the fiiter into LP stopband  and NLP 
passband  sections, which is especially attractive for narrow passbands. 

F 
I. INTRODUCTION 

INITE  impulse  response  (FIR)  digital  filters have been  ex- 
tensively studied in  the past  years  for several reasons. 

Among  these  are the properties  of  stability,  high-speed  imple- 
mentation using the  FFT  or  other  number-theoretic trans- 
forms,  and  optional  exact  linear-phase. Most of the work  done 
concentrated  on  linear-phase (LP) filters,  mainly  because the 
optimizing methods for designing FIR filters [l] , [2] are 
based on  the assumption that  the filter  coefficients  are  sym- 
metrical  (or  antisymmetrical)  and  this  implies that  the filter is 
LP. However, some  research  has  been done  on nonlinear- 
phase (NLP) digital  filters.  Holt et al. [3] demonstrated how 
to use the Remez exchange  algorithm  in  order to approximate 
both amplitude  and  phase  response. The amplitude response 
performance  of the resulting  filter is somewhat  worse [4] than 
that of  optimal  (i.e.,  minimal  order) LP filters.  Herrman et al. 
[ 5 ]  showed  how to design a  minimum-phase  FIR  filter, using 
a  prototype LP filter  and  selecting  half  of  its  zeros.  Another 
approach  for designing a  minimum-phase  filter was suggested 
by Burris [ 6 ] ,  using the  relation  between gain and  phase  re- 
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sponse  of  minimum-phase  filters. It appeared that minimum- 
phase  filters, designed using the last  approach,  needed  fewer 
coefficients than optimal LP filters  with the same gain re- 
sponse  specifications. However, this was not proved. 

In  this  paper,  some  aspects  of  a design method similar to  the 
one  proposed by Herrman et al. [5] are discussed. First,  the 
prototype LP filter is designed using more  efficient design 
methods  than  the one used in [ 5 ] .  Then,  a  discussion is  given 
on  the problem  of  defining  the  specifications on  the  prototype 
LP  filter.  Next,  the  performance  of  the  resulting NLP filter is 
theoretically  and  practically  compared to  that of the optimal 
(minimal  order) LP filter.  Finally,  some  practical  limitations 
in using the proposed design method are  brought  up, and an 
alternative design method is proposed  in  order to avoid these 
limitations. 

11. DESIGN OF NONLINEAR-PHASE  FIR  DIGITAL  FILTERS 
Let  H(z)  be  the transfer  function  of an NLP FIR  digital 

filter  of  order m (or  length pn t 1): 

m 
H(z) = h(n)z-n.  (1) 

n=o 

Define an FIR filter  whose  transfer  function is 

2m A 

A ( Z )  H(z) H(z -l)  z -m = c h(n) z -n (2 )  
n = o  

where 

k 
ĥ (/c) = h^(2m - k)  = h ( j )  h ( j  t m - k) ,  

j =o 

k = O , l ; . - , m .  ( 3 )  

Equation (3) implies that A(.) is a  linear-phase  filter since 
iis  coefficients  are  symmetrical. The frequency  response  of 
H(z)  can  be  described as 

A ( e i w )  = ~ ( ~ i w )  . H ( e - i w ) .  e-iwm 

= 1 H ( ~ j w ) l 2  . e-jwm = F ( e j w ) .  e- jwm (4) 
A 

where P(eiw) is a  real,  nonnegative  function. 
Let us examine the  connection between H(z) and k(z)  

from  the z-plane  point  of view. From (2 )  it is clear tkat if 
zi is a  zero  of H(z),  then  both zi and z;' are zeros  of  H(z). 
An example  of  a  possible  zero  positioning for  H(z) andI?(z), 
which  corresponds to a  low-pass  filter, is shown  in Fig. 1 
where  a  circled dot represents  a  double  zero.  It is easy to 
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Fig. 1. Positioning of zeros for (a) H(z) ,  and (b) H(z) .  

see that if zi is a  zero of H(z), so are zi', z:, and (z:)-' 
(z* denot?  the  complex conjugate  of z), consistent  with  the 
fact  that c ( z )  is a  linear-phase fiter. Notice that all of the 
zeros of H(z)  on  the  unit circle appear  in  a  multiplicity  of 
two.  This is necessitated  by the fact that P^(ejw) cannot 
be negative, and  therefore  cannot intersect the  o-axis  but 
only be tangent to it. 

From  the previous  discussion, the following  algorithm  can 
be used  for designing an NLP FIR digital filter H(z )  of  order 
m (i.e., whose  length is m t 1) and  whose gain response 
IH(eiw)l approximatesP(eiw)  for  soFe  givenP. 

a)  Design  an, LP FIR digital filter H(z )  of  order 2m whose 
gain response P(ej") apRroximates P2(ei") (see below). 

b)  Find the zeros of  H(z) [since the zeros are in  reciprocal 
and  conjugate pairs, once  a  zero  on  (off)  the  unit circle is 
known,  the order of the problem  may  be  reduced by 2 (4)]; 

c) Pick  one  zero  from  each pair of  reciprocal  zeros ofH(z) 
and  replace  each  double  zero  on the  unit circle with  a single 
zero,  thereby defining H(z).  (If minimum phase filter is 
needed,  the zeros inside and  on  the  unit circle are selected.) 

d)  Determine the  unit sample  response {h(n)}:='=, satisfy- 
ingH(z) = E:=:=, h(n) z - ~ .  

An alternative to steps b), c), and d) is t o  solve the set of 
m t 1 quadratic  equations (3). Unfortunately,  no  analytic 
solution  has  been  found to this  problem. 

A 

A 

111. SELECTION OF DESIGN SPECIFICATIONS 
When executing step a) in the proposed  algorithm, it is neces- 

sary to properly  define  the specifications of the  prototype LP 
filter, so that  the desired  specifications  of  the NLP filter are 
met. Generally,  the way of  doing it depends  on  the par- 
ticular method used for designing the  prototype LP filter. In 
this section,  two  of  the  known  optimal design methods are 
considered,  the  Remez type exchange  algorithm [7] and the 
use  of extrema1  polynomials [2]. The first is preferable over 
the  method used in [SI, as it permits the designer to specify 
the band edges. Moreover,  currently it can be implemented 
more  efficiently.  The  second is equivalent to  the  first,  but 
permits control of  behavior in transition  bands [2]. 

Our  discussion is restricted to multipassband/stopband fil- 
ters.  However, similar considerations  can  be  applied  for dif- 
ferent  shapes  of gain response. 

A .  The Remez  Type Exchange Algorithm 
Consider the bandpass filter shown in Fig. 2. Fig. 2(a) shows 

the gain response  function P(ei2,f) of  an  equiripple LP filter 
whose  desired value in  the  ith band is Di and  whose  deviation 
from the desired value in  the  ith band is S i .  Fig. 2(b)  shows 

(b) 

Fig. 2. Gain  response function of (a) ordinary and  (b)  prototype op- 
timal linear-phase  bandpass  Titer. 

the gain response  function $(eiznf)  of the  prototype LP 
filter  which  has to be  designed, so that  the specifications on 
the resulting NLP filtzr are ide2tical to those  of  the filter of 
Fig. 2(a). The sets {Dl}  and {Si} can easily be derived from 
{Di} and {Si}. For  example, if the  ith  band is a passband, 
then we  normalize Di = 1  and  therefore 

(1 t 6 i ) 2  = 6j + & 
(1 - 6 i ) 2  = & -  8i ( 5 )  

and  hence 
A 

Si = 26i 

Di= 14.6; 1. 
A 

(6) 
On the  other  hand, if the  ith baqd is a  stopband,  then 

A D.= 3 8; = S i  A 

(7) 
so that  the gain response  of the resulting NLP filter in  the 
ith band is bounded  between  zero  and 

6 i  = (2&)'/2. 

When  using the Remez  exchange  algorithm  directly,  the 
set  of  deviations {Si} is the  "output" of the design pro- 
cedure,  while  the  "input" design parameter is a weighting 
function W(eiznf)  (or,  in  the case of  multiband filters, a set 
of  weighting values {Wi)). However, it is not difficult to 
use "trial-and-error'' methods  [8]  in  order to have more 
flexibility in selecting the  input design parameters. On the 
other  hand,  when designing  NLP filters using the proposed 
methods,  the set of  deviations { S i }  must  be  included  among 
the  input design parameters.  For  example,  suppose we want 
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Fig. 3. Design of FIR digital  fiiter  using  extremal  polynomials. 

to  design an NLP filter whose weighting values are W1 and 
Wz (so f i 1 / t i Z  = W z / W , ) ,  with t$e weighcng values of the 
prototype LP filter denote:  as W ,  and yz. Without  loss 
of  generality assume that W1 = 1. Then W2 can be derived 
as follows. 

If g2 is nzt  known before the design ok&eiznf) is carried 
out,  then Wz cannot  be derived and P(ei2nf) cannot be 
designed. 

B. The Use of  Extrema1  Polynomials 
When using this method  for designing an LP filter,  one  has 

to define two  functions, gl ( f )  and g2 ( f )  < gl ( f )  (see Fig. 3). 
The gain response  function P(eiznf) oscillates  between  these 
two functions. When an NLP filter  has to be  designed, it is 
clear that  the  function ?(eiznf) has to  be bounded by  the 
functions gl ( f )  and g2 ( f ) ,  where 

2l(f>=s:(f)  

(9) 

IV. ON THE EFFICIENCY OF NLP DIGITAL FILTERS 
An interesting  question  which  may be raised concerning the 

proposed design algorithm is how  the  order  of  the  resulting 
NLP filter is related to the  order of other  kinds  of  FIR  filters 
(LP  or NLP), having the same gain response  specification.  In 
this  section,  this  question is considered. A weighting  function 
W is used in  the  next  lemma to allow for  different  error 
amplitudes  in  different  bands. 

Lemma I: Let H1 (z) and H2(z) be the transfer  functions 
of two LF' filters  defined on  the same frequency  band B. 
Associated with  each  filter is a weighting function W(eianf). 
Suppose the order Ni of Hi is even and  denote  the gain re- 
sponse  of Hi by Pi(eiznf)(i = 1,2). Define the (Chebyshev) 
error  in the  ith filter  with respect to a desired gain response 
D as 

Ei =max {I W(eiZnf)11Pi(eiznf) - D(eiznf)>l}. (10) 
f 

If E ,  is minimal  for  the given N1 then 

N1 >N2 *El  < E 2 .  

Proof: Express P1 and P2 as cosine sums: 

N, 12 
Pl(e izn f )  = a(k) cos 2nfk 

k=O 

N ,  12 

pz(eiznf)  = 2 b(k) cos 2nfk. (1 1) 
k=O 

Assuming N 1  > N2 , Pz can also be described as 

N, 12 

P2(d2" f )  = b(k) cos 2n f k  
k=O 

where b(k) = 0 for Nz / 2  < k < N1 12. 
Since the  set {a (k ) } t i f  minimizes the Chebyshev  error 

E l ,  this  set  uniquely  satisfies  (10) [7]. As a(N1/2) f O  = 
b(N, /2) ,  it must  follow that El < Ez . 

Theorem I: Among all FIR  filters  defined on  the same 
region of  frequencies B and having the same gain response 
specifications, the NLP filter  designed using the algorithm 
proposed in Section I1 has the smallest possible order. 

Proof: Let H 1  (z) and H2(z) be  the  transfer  functions 
of two  FIR filters having the orders N1 and Nz , respectively, 
and  suppose that  H,(z) is designed using the proposed algo- 
rithm. The  following  filters  are  next  defined. 

A, (z) = Z-Nl H1 (z) * H1 (z-l) 

A2(z) = z-N2H2(Z) * H2(z-l). (13) 

As shown  kefore, k1 (z) a%d A2 (z) are both LP  filters having 
the orders N1 = 2N1 and N2 = 2 N z ,  respectively. If ff,(z) 
and gz(z) have the same gain specifications, so h%ve H i ( z )  
and  H2(z).  Suppose  now  that N2 < N1 (and  thus Nz < NA), 
and design an optimal LP filter gz(z)  whose length is Nz , 
assuming th: same  Gesired specifications  and  weighting  func- 
tions as for H I  and H z .  The  result9g Chebyshev  error 0 f g 2  (z) 
will  be denoted a: 2. %ince bothH, (z) andgz(z)  are optimal 
filters,  and since N2 < N 1 ,  it follows  from  Lemma 1 that 

E">; (14) 

where is defined as the  Chebyshev  error  of A, and gz. 
S2(z) and E?; (z) are both linear-phase  filters of the same 

order, having the same desired  and  weighting  functions. Since 
Bz (z) is optimal, 

'@<E. (1 5) 

Clearly,  there is a  contradiction  between (15) and (14). We 
must,  therefore, assume that 

N2 2 N I .  

Two  important  conclusions  are  deduced  from  Theorem 1. 
The  first  one is that as far as the  filter's  order is concerned, 
the prop.osed method produces the  most efficient NLP filters. 
The  resulting  filter  will,  therefore,  be  referred to as an "op- 
timal" NLP filter.  The  second  conclusion is that optimal 
NLP filters  need  strictly fewer coefficients than optimal LP 
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Fig. 4. Gain  response of optimal linear-phase  low-pass filter. 

filters  with  the same  gain response specifications (for order 
N> 2). This conclusion follows from Theorem 1 and  the 
algorithm and is intuitively  understood since NLP filters 
are  free  of  the  constraint  of having symmetrical  coefficients. 
The question is how  much we can reduce the filter’s order  by 
giving up  the phase linearity. 

In order to answer this  question,  the following measure is 
defined with respect to  given  gain specifications. 

where NNLP and N L p  are the respective lengths of  optimal 
NLP  and LP filters having the same gain specifications. Since 
the  relations  between optimal  LP filter parameters  are gen- 
erally unknown, ER is computed only  for the case  of low-pass 
filter,  for  which good approximated relationships are known 
[9] between  the’ filter’s parameters (see  Fig. 4).’  For a given 
set  of specifications, ER is  given by  the following equation. 

ER = +  [N(26,,~6~,AF)tl]/N(61,62,AF) (1 7) 

where AF = F, - Fp is the  transition  width  and N(6 1 ,  6 2 ,  AF) 
is the  length of the optimal LP  low-pass filter whose parameters 
are rS1, ti2, and AF. Equation (17) is derived directly  from 
(16) using the results of the previous section. 

The filter length N(6 1 ,  6 2 ,  AF) was found  in  [9] empiri- 
cally,  for 6 , 2 a2. While the region of interest  for  determin- 
ing the minimum value  of ER corresponds to  the case when 
6 , 2 €i2, the  error caused by using the equation  for N(6 ,, 6 2 ,  

AF) given in [9 ]  with 61 < 62 is quite small (within a few 
percent) [ 141. The curves in Fig. 5 show the  computed values 
in  both regions. 

Three  types  of curves are derived and depicted in Fig. 5. 
Fig.  5(a), parts 1 and 2 show ER plotted against stopband 
rejection in dB and  transition  width AF, respectively, for  the 
case of  narrow-band filters (Fp -+ 0), Fig. 5(c), parts  1  and 2 
for  the  ,case of wide-band filters (F, - + O S ) ,  and Fig. 5(b), 
parts  1  and 2 for  “ordinary” filters (where Fp and F, are not 
near the edges). This  partition results from the  fact  that  dif- 
ferent relations between the filter’s parameters exist for each 
of  these  three  types of filters [9]. Part  1 of  (a), (b), and (c) 
show ER as a function of the  stopband rejection DLz  for 
varying passband rejections DL1,  where the passband and 
stopband rejections are  defined as 

1.01 
DL,= a,] 

0.g7[ 0.93 ‘3 ~ 

DL 1 = 20,30,40 ,..., 100 dB 
0.85 

1.00 I DL~=Z0.30.40 ,..., 100 dB b i ]  

0.57 
AF = 0.1 c1 I 

DL2=20,30,40 ,..., 100 dB 
l / I I I , I ,  

DL1=30 dB 
DL2=20,30,40, ...., 100 d8 

DL3 -30 dB 
DLz=20.30,4 Q..., 100 dB 

0 4 8 42 16 20 
STOPBAND REJECTION (IN dB1 TRANSITION WIDTH (x) 

Fig. 5. Dependence Of ER on  the fiiter  parameters  for  a low-pass filter. 

DLj=-2010g10(6j), i =  1 ,2 .  (18) 

In part 2 of (a), (b), and (c), ER is depicted as a function of 
the  transition  width AF? for varying  values  of DL2. An ex- 
amination of  Fig. 5 reveals the following observations. 

1) For a wide range of parameters  (0.01 G AFG0.2, 
0.00001 G t i 2  G 61 G O.l),  ER is bounded  by 

0 . 4 < E ~  < l .  (19) 

2) As Fp increases (from 0 to O S ) ,  ER decreases from 1 
to  about 0.4. 

3 )  The dependence  of ER on  the  transition  width AF is 
very weak. 

4 )  Except  for the case of wide-band filters, ER tends to 
decrease with decreasing stopband rejection and increasing 
passband rejection.  The behavior for wide-band filters is 
reversed. 

The fact that ER < 1 is predicted  by  Theorem 1. Let us 
explain the behavior of ER at  its low end. Let H and H 1  be 
the  transfer  functions  of  an  optimal NLP and  an  optimal LP 
low-pass filter, respectively, each having the same  gain  re- 
sponse specifications P,  6 ,, 62 and of  respective orders N and 
N1. Then ER = (N t l)/(Nl t 1). The  LP filter with transfer 
function 

A(2) = z -%(z) H ( z  -1 )  

and  order 6 = 2N has gain rTponse P with deviations 26 , and 
6;/2 with respect to  which N is minimal for  LP  filters, as has 
been demonstrated. Since filter order decreases monotonically 
withAincreasing deviation, in comparing the LP H I  with  the 
LP H,>he effect of relaxing 61 to 261 would tend  to cause 
N 1  > N while the effect of  c%ntracting a2 to  6; 12 (for a 2  << 
1) would  tend to cause N, < N. As relaxation in  the passband 
proceeds linearly while contraction  in  the  stopband proceeds 
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geometrically,  one  would  exffect the  latter effect to dominate, 
with the result that N 1   < N  or ER = ( N +  l)/(Nl + 1) = (4) 
. (A t  2)/(N1 + 1) 2 3. However, the effect on  the order  of 
changing the  deviation bound 6 i  i's also  proportional to  the 
bandwidth  of  the i th band [9]. Thus,  for  a very wide pass- 
band,  the rzlaxation  of 6 to 26 dominates,  with the result 
that N l   > N  and ER < 3. One  would  expect  the same prin- 
ciple to apply to multipassband  filters. 

Because of  the  symmetry hk = h N - k  in  the  coefficients 
hk(k = 0, . . , N )  of  an LP filter of order N (and the lack  of 
symmetry in  the coefficients of an NLP filter), an LP filter 
of  order 2N can be  implemented  through  the  adjustment  of 
N parameters, as can an  NLP filter  of  order N .  Thus, when 
ER < 3, NLP implementation is more  efficient than LP im- 
plementation. When ER > 4, LP implementation is more 
efficient  than NLP, provided  the LP coefficient  symmetry is 
exploited.  In this case the  "complexity"  of  an LP filter  of 
order 2N compares  with that  of  an NLP filter  of  order N .  
However, in certain cases, this  coefficient  symmetry  cannot 
effectively be exploited.  For  example,  when an LP filter is 
utilized  with  a  delta-modulated signal [ l  I ]  or  with ADPCM 
[12], there is no term-by-term  multiplication as in  the above 
convolution,  but,  rather, sums  of  coefficients  are  added,  cor- 
responding to  the same incremental  term (+ 1). Also, in  im- 
plementing a CCD filter  one is concerned  with  minimizing the 
filter  length so that  the effect of charge transfer  inefficiency 
may  be  reduced.  In  such cases the efficiency  of  an LP filter 
of  order N compares  with that of an NLP filter of order N ,  
and from  this  point  of view the NLP implementation is more 
efficient so long as ER < 1. 

The  conclusion is that  with regard to filter  length, given  gain 
specifications can be realized more  efficiently by LP  filters 
than  by NLP filters  in  most cases. However, for very wide 
passband  filters  or  filters in which  coefficient  symmetry is 
absent  or  cannot be exploited,  such as  CCD filters  or  special 
purpose  implementations  for  delta-modulated  or ADPCM 
signals, NLP filters are more  efficient. 

V. COEFFICIENT QUANTIZATION  ERROR IN LP 
VERSUS NLP FILTERS 

The NLP  design algorithm provides no intrinsic guidelines 
for  choosing  among the zeros  of  nonunity  modulus.  In  this 
section  the  coefficient  quantization  error as a  function  of  the 
choice  of  zeros is analyzed  and  compared to  that of the  op- 
timal LP filter  for  the same gain response specifications. 

Since the direct  form  realization  is the most  commonly 
used for  FIR  filters, it will also be assumed when  making the 
comparison.  In  this  case,  what is of  main  interest is the dis-. 
tortion in gain response  caused by coefficient  quantization. 
In [lo] it was shown that  for each  frequency,  the change in 
gain response is a  random value (approximately Gaussian) 
whose  maximal value, as  well  as its variance, is similar for LP 
and NLP filters having the  same  order  and  quantization  step. 
What  is left to be  checked is mainly the dependence of this 
error  on the specific  zero  selection.  In  order to  do this,  it is 
convenient to define  a  measure  which  characterizes  this  error 
for  each  filter. This is done as follows. 

Let D(eiznf)  be the desired  amplitude  response  of an FIR 
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Fig. 6 .  Normalized error as function of normalized  frequency for op- 
timal FIR filters  with varying coefficient  wordlength b and the fol- 
lowing parameters: N = 31, Fp = 0.2, 6 1 = 62  = 0.1. (a) Nonlinear- 
phase  Titer. @) Linear-phase filter. 

filter,  and H(eiza f )  its  frequency  response,  which  can  be  de- 
scribed for  the case of  an LP filter as in [ 101 

~ ( ~ i z n f )  = g ( e i 2 n f )  , - i z n f W / z )  (20) 
where Ei is a  positive  function. The following  function can 
then be  defined. 

(21) 
For eacli value of f, E(eiznf)  describes  the  error in gain 

response caused by  the  fact  that  the  filter's  order is finite. 
In  the case of a multiband  filter, the error  function E(eiznf j  
has an equiripple  form.  The  normalized  error  in  the ith band 
is defined  as' 

where Bi is the region of  frequencies  in the  ith  band,k*(eiznf) 
is the  error  function  when  the  coefficients  are  represented 
with  finite  wordlength,  and 6 i  is the maximal  deviation  in the 
ith band  for  infinite Coefficient wordlength. 

Fig. 6 shows the normalized  error as a  function  of  normal- 
ized frequency  for  optimal LP and NLP low-pass  filters having 
the same gain specifications, for varying value of  coefficient 
wordlength b.  From Fig. 6 it seems that  the effect  of  coeffi- 
cient  quantization is similar for LP and NLP filters.  It  can  also 
be seen that  the maximal  normalized  error in  the i th band, 
which will be  defined as E:, tends to increase  when b de- 
creases. Moreover, the  frequency  at  which the normalized 
error  attains  its  highest value  is randomly  located  in the re- 
gion Bi, and as ET increases, all of  the  peaks  of  the  normalized 
error  tend to increase. 
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Fig. 7. Actual  passband and  stopband  rejections as a function  of coeffi- 

cient wordlength for  optimal linear-phase  and  nonlinear-phase filters 
with various  zero  selections. Here,DL1 = 20.95 dB,DL2 = 40.44 dB, 
Fp = 0.2, AF = 0.045, N L ~  = 29, N N L P  = 26, the open circles  show 
linear phase, and the closed  circles  show minimum phase. 

These observations are  found to  be valid when repeating 
Fig. 6 for a wide range of filter specifications. It may  there- 
fore  be  concluded that  the maximal normalized error E? can 
serve as a measure of the loss in performance in  the  ith band 
due  to coefficient quantization.  Another measure which is 
related to E? is the  actual in-band rejection, defined as 

DL! = -20 i o g l 0 s ~  (23) 

where SF is the  actual (after coefficient quantization)  maxi- 
mal deviation in the  ith band. Since &!/Si = E?, it is  clear 
that 

DL: =DLi - 20 log,oET (24) 

where DLi is the ideal in-band rejection, defined in (18). 
Fig. 7 shows DL: and DL; as functions  of  the coefficient 

wordlength  for  optimal LP and NLP low-pass filters. Four 
curves are depicted  for each band. The  inner  two  correspond 
to linear-phase and minimum-phase filters. The  outer  two 
describe the maximal and minimal value of DL!, respectively, 
for each wordlength,  when all of the possibilities of  zero selec- 
tion (from off  unit circle zeros) are  taken  into account  (prac- 
tically, only  half  of the combinations had  to  be  considered, 
since when  each  zero  of the NLP filter is  replaced by  its re- 

ciprocal, the  actual normalized error remains unchanged). 
The indexes attached to these two curves define the filters 
which correspond to  the maximal (or minimal) value  of DL: 
for each  wordlength. An index “0” defines a linear phase 
filter, “1”-a minimum-phase filter (all zeros inside the  unit 
circle), “2”-all  of the  zeros  except  one  are inside the  unit 
circle, and “k” for k>O defines a filter all but k - 1  of 
whose zeros are inside the  unit circle. 

From Fig. 7 it can easily be seen that  for each value  of b,  
the filter which corresponds to  the highest value of DL! can 
randomly be an Lp or  an NLP filter. Moreover, in the case 
of an NLP filter,  any  combination of zero selection can be 
the one  which  corresponds to the highest DL?. This means 
that in order to achieve the filter with best performance,  it 
is  necessary to design 2n-1 NLP filters (where M is the .num- 
ber of pairs of zeros of the  prototype LP filter off the  unit 
circle), and to  compute  the  actual gain response of  each  one 
of them  for a given wordlength. This, of  course, is not prac- 
tical. It is  also unnecessary, since for  each b the  difference  in 
actual rejection between the best choice  and the poorest one 
is not significant. This is not mentioning the  fact  that  for 
each b the filter which corresponds to  the best performance 
in the passband does not necessarily  have the best performance 
in  the  stopband, and vice  versa. This-can also be seen from 
another  point of view-if a given  value  of actual rejection 
has to be met,  then  the difference between the smallest and 
the largest wordlength is not more  than  one  or  two  bits. 

The conclusions above are verified when Fig. 7 is repeated 
for a wide range of low-pass filter parameters. Moreover, the 
shape of the curves for each band does not depend on whether 
it is a passband or a stopband,  but only on  the value of DLi. 
This fact, which is consistent  with  the results of [ 101, implies 
that  the same conclusions are also  valid for a multiband filter 
having more  than  two bands. No substantial advantage  is 
therefore gained from this point  of view by having the free- 
dom of selecting the NLP filter’s zeros. 

VI. PRACTICAL CONSIDERATIONS IN THE DESIGN OF 

NLP FIR DIGITAL FILTERS 
When  designing optimal  multiband LP filters using the 

Remez exchange algorithm,  it  turns  out  that  for high in-band 
rejections, the resulting error  function [defined in (21)] does 
not have an exact equiripple form. This phenomenon is 
caused by  the  fact  that  the design procedure is executed by a 
processor whose multiplication  and division operations have a 
finite precision. As a result,  the designed in-band rejections 
are smaller than  the desired ones. 

Table I shows an example  of the  actual passband and stop- 
band rejections of  an  optimal low-pass filter, DL; and DL;, 
respectively,  as a function  of  the desired rejections, DL1 and 
D L 2 ,  In  this  example,  an IBM 370/168 computer was  used 
for executing the design process. An asterisk alongside the 
value of the rejection indicates that  there were some difficulties 
in the convergence of the Remez algorithm. (The algorithm 
did not converge when the  error  function was  close to equi- 
ripple.) A double asterisk indicates that  the algorithm failed 
to converge. From Table I  it seems that  for rejections above 
90 dB, the  actual rejections were smaller than  the desired ones. 
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TABLE I 
ACTUAL REJECTIONS (IN dB) AS FUNCTION OF DESIGNED REJECTIONS FOR AN N = 26, Fp = 0.15 OPTIMAL LINEAR-PHASE 

LOW-PASS FILTER 

1 1 

20 
19.99 20.04 20.02 19.96  20.01 19.97 STOPBAND 

** 69.86 '60.00 50.00 39.96  30.01 19.97 PASSBAND .. **  ** 29.78' 
20.22 

30 

94.07 100.97 95.40 88.65 79.35 69.85 60.01 49.97  39.98 30.02 19.99 PASSBAND 40 
29.97' 29.93'  30.07. 29.95 30.03  30.03 30.07  30.06 30.03 30.00 STOPBAND 

'* 98.56 95.68 88.79 79.54 69.91 59.97 50.07 40.06 3&03 20.00 PASSBAND 

STOPBAND 39.99 40.02 39.98 39.98'  39.95' 39.95' 40.07.  40.04 39.93 40.06 39.98 

- 

50 92.72. 99.44 95.87 88.55 79.53 69.86 60.02 50.04 40.07  29.98 19.97 PASSBAND 
STOPBAND 49.90. 49.99'  49.91.  49.93. 49.97 49.91 50.06 50.05 54.07 49.98 49.96 

60 

** 99.78 95.28 88.60 79.56 69.85  59.95 49.95 39.96  30.02 19.98 PASSBAND 70 
59.95'  60.04' 59.98 60.05'  59.96  59.98.  60.07 59.92 60.01  59.98 STOPBAND 

*' 100.52 96.13 88.90 79.66 69.86 59.95  50.07 39.92 30.02  20.02 PASBAND 

STOPBAND 69.94 70.00 69.87 69.91' 69.75. 69.92. 69.93' 69.94 69.98 69.94 
80 101.51 97.57 96.23 88.67 79.70 69.81 59.91 50.05 40.04 30.00 20.06 PASSBAND 

TABLE I1 
ACTUAL REJECTIONS (IN dB) AS FUNCTION OF DESIGNED REJECTIONS FOR AN 

N = 26, Fp = 0.15 OPTIMAL NONLINEAR-PHASE LOW-PASS FILTER 

Moreover, it was impossible to design a  filter having higher 
rejections  than 100-1 10 dB. 

Table I1 shows the  actual  rejections  for  optimal NLP filters 
having the same orders and passband  cutoff  frequencies as in 
Table  I. It is not difficult to see that while  the  limitations  on 
the  passband  rejection  are similar for LP and NLP filters,  the 
stopband  rejection is much more  restricted  for NLP filters. 
In  fact,  it was not possible to design an NLP filter having 
higher  stopband  rejection  than 60 dB. This is not surprising 
since the design of an optimal NLP filter whose passband 
and  stopband  deviations are S 1  and S 2 ,  respectively, is based 
upon designing an optimal LP filter whose deviations  are 2a1 
and (3) 6 ; .  

Tables similar to I and I1 were derived for various Titer  pa- 
rameters,  resulting  in the same limitations.  This raises the 
problem  of designing FIR filters  with  higher  rejections  than 
those  ,permitted  in  Tables I and 11. In  the case of LP filters, 
this  problem  can  be solved by using the  method mentioned 

I .  I 
(a) (b) 

Fig. 8 .  Design of a  low-pass  minimum-phase filter. 

in [13], that is, to design an  optimal LP filter  with  relatively 
low rejections, and making  a  proper  transformation on it. 
However, this  does not solve the problem  for NLP filters. 
In  this  case,  the  following  algorithm  may  be used for design- 
ing an NLP filter  with high rejections. 

a) Design an LP filter  with the desired specifications. 
b)  Find the zeros  of the designed filter. 
c) Replace the set  of  zeros  off the  unit circle  with a new 

one,  by  replacing  each  undesired  zero  with  its  conjubate 
reciprocal. 

Fig. 8 gives a  demonstration of the algorithm  for  a  mini- 
mum phase filter,  where  a  circled  dot  represents  a  dou6le 
zero.  The  proposed  algorithm is based on the well-known 
fact that  the amplitude  response  remains  unchanged  when 
replacing  a  zero  with  its  conjugate  reciprocal. The resulting 
NLP filter  has by definition the same  order as an o p t k a l  
LP filter  with the same  specifications,  which,  of  course, is 
greater  than  the  order of the corresponding  optimal NLY 
filter. However, this NLP filter  has  some  advantages  whicb 
make it sometimes  more  attractive than an optimal NLP 
filter.  First,  the  limitations  on  the  rejections  are  identical, 
by  definition, to those of optimal LP filters.  In  addition, 
the designer has  more  flexibility  in  defining the  fiter's spekifi- 
cations.  Finally,  the  implementation  of the resulting NLP 
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filter can  be simplified, using the fact that  its transfer func- 
tion can be factored in the following  manner. 

HNLP(Z) = HI (z) * H 2  (z) (25) 

where H l ( z )  contains all of the zeros on  the  unit circle, and 
H2(z),  all of the zeros  off the  unit circle. Clearly, H l ( z )  is a 
linear phase filter and,  therefore,  has  symmetrical  coefficients, 
and its  implementation  can  generally  be simplified. 

Although  in  principle  this  simplification  can  be  applied to 
optimal NLP filters, practically this is not  the case. The rea- 
son for this is the fact that even for relatively small  values  of 
stopband rejections, the gain response  of the  prototype LP 
filter is no longer equiripple, and it intersects  the  frequency 
axis instead  of  being  tangent to it [see Fig. 2(b)]. In  order 
to achieve the desired stopband  rejection, (7) must  be re- 
placed by  the following  equation. 

Di = 1 6 2  2 1  
A 

6.=162 - E .  1 i 1 ,  fiX0.16j. (26) 
n 

In this case, the gain response  curve  does not  touch  the  fre- 
quency axis, which  means that  the filter has  no  zeros  on the 
unit circle, and the  factorization  of  (25)  cannot  be  applied to 
it, 
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