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For the security of K, note that X is assumed to have min-en-
tropy b even given A1;B1; . . . ;Au;Bu, and we can assume that
X ;Xi ;Xi ; . . . ;Xi are mutually independent as they are gener-
ated in distant places. Thus, Theorem 2 implies

khXi ; . . . ;Xi ;Ki � hXi ; . . . ;Xi ;Uik � 2�(b+k+2�n�m)=2

where k = max(H1(Xi ); . . . ;H1(Xi )). That is, K is secure
enough when b+ k � n+m. Note that any strong extractor will also
work.
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Bounds on the Performance of Vector-Quantizers
Under Channel Errors

Gal Ben-David, Senior Member, IEEE, and DavidMalah, Fellow, IEEE

Abstract—Vector quantization (VQ) is an effective and widely known
method for low-bit-rate communication of speech and image signals. A
common assumption in the design of VQ-based communication systems
is that the compressed digital information is transmitted through a
perfect channel. Under this assumption, quantization distortion is the
only factor in output signal fidelity. Moreover, the assignment of channel
symbols to the VQ reconstruction vectors is of no importance. However,
under physical channels, errors may be present, causing degradation in
overall system performance. In such a case, the effect of channel errors
on the coding system performance depends on the index assignment of
the reconstruction vectors. The index assignment problem is a special
case of the Quadratic Assignment Problem (QAP) and is known to be
NP-complete. For a VQ with reconstruction vectors there are !

possible assignments, meaning that an exhaustive search over all possible
assignments is practically impossible. To help the VQ designer, we present
in this correspondence lower and upper bounds on the performance of VQ
systems under channel errors, over all possible assignments. The bounds
coincide with a general bound for the QAP. Nevertheless, the proposed
derivation allows us to compare the bounds with published results on VQ
index assignment. A related expression for the average performance is
also given and discussed. Special cases and numerical examples are given
in which the bounds and average performance are compared with index
assignments obtained by known algorithms.

Index Terms—Channel coding, index assignment (IA), performance
bounds, vector quantization (VQ).

I. INTRODUCTION

Vector quantization (VQ) is a method for mapping signals into dig-
ital sequences. A typical VQ-based communication system is shown in
Fig. 1.

A discrete-time source emits signal samples over an infinite (or
densely finite) alphabet. These samples should be sent to the destina-
tionwith the highest possible fidelity. TheVQ encoder translates source
output vectors into channel digital sequences. The VQ decoder’s goal
is to reconstruct source samples from this digital information. Since
the analog information cannot be perfectly represented by the digital
information some quantization distortion must be tolerated.

In each channel transmission, the VQ encodes a K-dimensional
vector of source samples x(t) into a reconstruction vector index
y(t), where the discrete variable t represents the time instant or
a channel-use counter. The index is taken from a finite alphabet
y(t) 2 f0; 1; . . . ; N � 1g, where N is the number of reconstruction
vectors (hence the number of possible channel symbols).

The index assignment (IA) is represented in Fig. 1 by a permutation
operator

� : y(t) 2 f0; 1; . . . ; N � 1g ! z(t) 2 f0; 1; . . . ; N � 1g: (1)
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Fig. 1. VQ-based communication system.

The number of possible permutations N ! increases very fast with
N . For example, for a VQ with just 4-bits index representation (N =
16 indices) there are 16! � 2 � 1013 possible permutations. For typ-
ical values of N , examination of all possible permutations is therefore
impractical. The channel index z(t) = �fy(t)g is sent through the
channel.

For memoryless channels, the channel output ẑ(t) is a random map-
ping of its input z(t), characterized by the channel probability matrix
H , defined by

fHgij = Probfẑ(t) = j j z(t) = ig: (2)

Throughout, we assume thatH is symmetric (i.e., we consider mem-
oryless channels with a symmetric transition matrix).

For the special case of the binary-symmetric channel (BSC)

fHgij = Probfẑ(t) = j j z(t) = ig

= q
d (i;j)(1� q)L�d (i;j) (3)

where L is the number of bits (N = 2L) per channel use, q is the
bit-error rate (BER), and dH(i; j) is the Hamming distance between
the binary representations of i and j.

At the receiver, after inverse-permutation, the VQ decoder converts
the channel output symbols into one ofN possible reconstruction vec-
tors. The decoder’s output x̂(t) is, hopefully, “close” to the original
input. The term “close” will be defined by a distortion measure d(x; x̂)
between the input and the output of the VQ system.

Knowledge of the source statistics p(x) or the availability of a repre-
senting training sequence is assumed. The performance of the overall
system ismeasured in terms of the average distortionE[d(x; x̂)]. When
a training sequence is used, the average distortion is estimated.

In “classic” discussions of VQ applications, the channel is assumed
to be noiseless (H = I , where I is the unity matrix) [1], so that no
errors occur during transmission and y(t) = ŷ(t) for every t. The
permutation� has no effect in this case. This assumption is based upon
using a channel encoder–decoder pair to correct channel errors, causing
the distortion due to channel errors to be negligible.

Upon knowledge of the source statistics, Lloyd’s algorithm [1] may
be used to design the VQ. In practice, a training sequence is used
and the Linde–Buzo–Gray (LBG) algorithm [1] is implemented. Both
methods are iterative and alternately apply the nearest neighbor condi-
tion and the centroid condition.

In some applications, channel coding is not utilized due to its com-
plexity or because of bit-rate constraints. In case of a channel error
event, a wrong reconstruction vector is selected at the decoder. The
distortion due to channel errors can be significant and affects the de-
sign of the VQ system [2]–[17].

In the literature, two main approaches are proposed to improve
the performance of vector quantizers under channel errors. The first

method allows modification of the partition regions and their corre-
sponding codevectors. In the presence of channel errors, and given the
transmitted symbol, the received symbol is a random variable. It is
suggested to redesign the VQ by modifying the distortion measure to
take all possible output vectors into consideration. This modification
results in a weighted-nearest-neighbor and weighted-centroid condi-
tions [8], [9], [11], [30]. These conditions are specific to every channel
condition. Hence, a VQ designed for a noisy channel should, in prin-
ciple, monitor channel conditions, and apply a different partition and
a different set of codevectors for each possible BER. Other drawbacks
of this approach are the large memory consumption and extensive
design effort.

The second approach tries to reduce channel distortion by using
better IAs. The search for the optimal IA is a special case of the
Quadratic Assignment Problem (QAP) and is known to be NP-com-
plete [10].

Several suboptimal methods are suggested in the literature. In [12],
[13], an iterative algorithm is proposed. After selecting an initial as-
signment, the algorithm searches for a better assignment by exchanging
indices of codevectors, and keeping the new assignment if it performs
better than its predecessor. This algorithm can only offer a local min-
imum. A more sophisticated algorithm is examined in [9], where sim-
ulated annealing (SA) is used to search for an optimal IA. The method
of SA involves some ad hoc arguments to define system “temperature”
and “cooling” procedures. Moreover, the method of SA has a very slow
convergence rate, and cannot assure global optimum during a limited
design period. A suboptimal quadratic placement algorithm [19] is used
in [20] for obtaining an efficient VQ IA. Implementation of a search
approach for quadratic assignment problems, known as Tabu, is ex-
amined in [21]. The Tabu search begins with a random assignment. In
each iteration it finds a new solution by making a local step (e.g., index
switching). Normally, such local steps will locate a local minima and
cycle about it. To avoid cycling, the method records its moves in one
or more Tabu lists. This insures that new regions of the problem solu-
tion space will be investigated. Similar to the SA, the Tabu search has
a slow convergence rate and cannot assure a global optimum.

For the special case of a uniform scalar quantizer and a uniform
source under the BSC, it is shown in [28] that the natural binary code
(NBC) assignment is an optimal assignment. Later approaches, using
eigenvalue arguments, [3], [6], [7] have reached the same conclusion.
The NBC is also optimal for the 4-bit uniform scalar quantizer using a
(4; 7) Hamming error control code, under the BSC channel [33], [3].

The difficulty in obtaining good assignments validates our develop-
ment of performance bounds. These bounds and a related expression
for the average performance over all possible IAs may benefit the VQ
designer in estimating the performance of a given assignment. Given a
VQ structure, upper and lower bounds on the “assignment gain” benefit
the VQ designer searching for an efficient assignment. The evaluation
of the average performance, over all IAs, can also help in revealing how
well a given assignment performs.

The remainder of the correspondence is organized as follows. In
Section II, the distortion due to channel errors is defined. The opti-
mization of the channel distortion over all possible IAs is discussed.
In Section III, bounds on the performance of a given VQ system under
a given symmetric and memoryless channel, over all possible IAs, are
obtained. Although the bounds are found to coincide with more gen-
eral QAP bounds, the new derivation method allows us to compare
these bounds with previously published VQ IA results [16]. A related
expression for the average performance over all IAs is presented in
Section IV. Special cases and numerical results, obtained in simula-
tions, are presented and discussed in Section V, while conclusions are
given in Section VI.
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II. CHANNEL DISTORTION

A vector quantization system is characterized by a set of codevec-
tors and a corresponding partition of the signal space R of all pos-
sible input vectors x. This space is partitioned intoN regions, Ri; i =
0; 1; . . . ; N � 1. These regions cover the whole signal space and are
nonoverlapping

N�1

i=0

Ri = R

Ri \Rj = i 6= j; (4)

Each partition regionRi has a corresponding reconstruction (or rep-
resentation) vector �

i
. For the special case of centroid quantizers

�
i
=

R

x � p(x) � dx=

R

p(x) � dx:

The encoder accumulates a K-dimensional vector of source sam-
ples x. The symbol y(t) = i is emitted if x 2 Ri. The corresponding
channel symbol z(t) = �(i) is transmitted through the channel. The
channel’s output is a random mapping of this transmission. Upon re-
ceiving the channel symbol ẑ(t) = j, the decoder emits the reconstruc-
tion vector that corresponds to the index �1(j).

The overall distortion of the VQ-based communication system is

DT = E[d(x; x̂)]

=

N�1

i=0

N�1

j=0

f� �H � �T gij

R

d(x; �
j
) � p(x) � dx: (5)

In (5), the permutation is represented by a permutation matrix �,
whose entries are 0’s and 1’s and the sum of elements in each of its
rows and columns is 1. The permutation matrix is self-orthogonal, i.e.,
��T = I .

For the perfect channel, H = I , the permutation matrix � is of no
importance, and the only factor affecting system performance is the
quantization distortion—DQ

DQ = DT jH=1 = E[d(x; x̂)]jH=1

=

N�1

i=0
R

d(x; �
i
) � p(x) � d(x): (6)

In the following analysis, the channel distortionDC , is defined by

DC =

N�1

i=0

pi

N�1

j=0

f� �H � �T gij � d(�
i
; �
j
)

= tracefP � � �H � �T �Dg

= tracefD � P � � �H � �T g (7)

where pi is the probability of

x 2 Ri; pi =
R

p(x) � dx:

The matrix P in (7) is a diagonal matrix, which contains these prob-
abilities, i.e., P = diagfp0; p1; . . . ; pN�1g, and the entries of the ma-
trix D are the distances between all possible pairs of reconstruction
vectors Dij = d(�

i
; �
j
).

It is shown in [9], [11] that for the squared Euclidean distance mea-
sure and centroid quantizers, the overall distortion is the sum of the
quantization and channel distortions: DT = DQ + DC . This result
is also applicable for quantizers with a large number of codevectors
(N ! 1) [30].

For the special case of a uniform scalar quantizer, a uniform source,
and transmission over a binary symmetric channel, it is shown in [28]
that the NBC assignment, corresponding here to � = I is an optimal
assignment.

III. PERFORMANCE BOUNDS

Minimization of channel distortion, as defined in (7), over all pos-
sible IAs (or permutation matrices �) is known to be a special case of
the QAP [8]. The QAP is known to be NP-complete and therefore ob-
taining optimal assignments may not be feasible.

In this section, we introduce lower and upper bounds on the channel
distortionDC , under memoryless channels with a symmetric transition
matrix, over all possible assignments (or permutation matrices—�).
As in [5], [17], we define a symmetric matrix, the weighted distance
matrix, D̂ as

D̂ = DP + P TDT (8)

so that by using the symmetry property of the channel matrix H , the
channel distortion becomes

DC =
1

2
tracefH�T D̂�g: (9)

The proposed bounding technique is based on eigenvalues argu-
ments. Instead of optimizing over the (discrete) family of matrices
covering all possible assignments �, we optimize over a wider (con-
tinuous) family.

A fundamental step in this optimization procedure is to replace the
weighted distance matrix D̂, defined in (8), by another symmetric ma-
trix, the balanced weighted distance— ~D, such that the all-ones vector
1 = [1 1 � � � 1]T is its eigenvector, while DC is just changed by a
known constant. This goal is achieved by the following procedure.

First, we denote a matrix of the form shown next as a “column struc-
tured” matrix

Ci =

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 � � � 0 1 0 � � � � � � 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

= 1 � eTi

" ith column

(10)

where eTi = [0 � � � 0 1 0 � � � 0] and the 1 is located at the ith
location. Recalling thatH represents probabilities, the sum of elements
in any of its rows is one, so the vector 1 is an eigenvector of H : H �
1 = 1. The same argument is valid for the ith column of the matrix
Ci : H � Ci = Ci; i = 0; 1; . . . ; N � 1.

We now construct a symmetric matrix �(Ci + CTi ), where � is a
scalar, denoted here as a cross-structured matrix. It is simple to show
that, regardless of the permutation matrix �, adding a cross-structured
matrix to thematrix D̂ changes the expression in (9) just by the addition
of the scalar �

1

2
trace H�T D̂+� CTi +Ci � =

1

2
tracefH�T D̂�g+�

(11)
Let si denote the sum of the elements in the ith row of the matrix D̂

si =

N�1

j=0

(D̂)ij (12)

and let smax = maxi si denote the largest sum.
In order to achieve the desired property ~D � 1 = !01, for some !0,

all rows of ~D must have the same sum of entries. Let us examine the
effect of adding the “cross-structured”matrix�(Ci + CTi ) to a general
matrixM of size N �N . The sum of elements in all rows except for
the ith row is increased by �, while the sum of elements in the ith row
is increased by (N + 1) � �.
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Therefore, we define the matrix ~D to be

~D = D̂

N�1

i=0

�i(Ci + CT
i ) (13)

where �i = (smax � si)=N . Having smax � si, the scalars �i are all
nonnegative. By adding N cross-structured matrices, some of which
are all zeros, we get that ~D is a symmetric matrix with all its rows
having the same sum of elements, and with the desired property ~D �1 =
!01. We shall refer to ~D as the balanced weighted distance matrix. The
channel distortion can now be written as

DC =
1

2
tracefH�T ~D�g � S (14)

where S = N�1

i=0
�i.

At this point, it is interesting to note that both the channel matrix
H and the balanced weighted distance matrix ~D are symmetric, have
nonnegative entries, and have the vector 1 = [1 1 � � � 1]T as an eigen-
vector. Moreover, because of the symmetry property, all eigenvalues of
both matrices are real.

We note ([22, Sec. 15.7]) that the eigenvalue 1 of the matrix H and
the eigenvalue !0 > 0 of the matrix ~D, both corresponding to the
eigenvector 1, are each the largest eigenvalue in absolute value of the
corresponding matrix. (There may be negative eigenvalues, but smaller
in absolute value).

Next, we use eigenvalue arguments to obtain bounds the channel
distortion. We perform a unitary diagonalization on both matrices

H = V � � � V T ; V � V T = I

~D =W � 
 �W T ; W �W T = I: (15)

Without loss of generality, we sort the eigenvalues (and corre-
sponding eigenvectors) in � and 
 in decreasing order. Substituting
(15) into (14)

DC =
1

2
tracefV �V T � �TW
WT�g � S

=
1

2
tracef�	
	T g � S

=
1

2

N�1

i=0

N�1

j=0

�i!j 
2

ij � S (16)

where we define �i = �ii; !i = 
ii; i = 0; 1; . . . ; N � 1; and the
matrix 	 is defined as 	 = V T�TW . The matrix 	 is also unitary
since 		T = V T�TWW T�V = I .

For the special case of an L-bit binary word transmitted through a
BSC, the channel transition matrix H is known to be diagonalized by
the Hadamard matrix and the eigenvalues �i; i = 0; 1; . . . ; N � 1 are
known explicitly [6], [7], [17]. There are L + 1 distinct eigenvalues,
(1 � 2q)m; m = 0; 1; . . . ; L; each with multiplicity L

m
, where q is

the BER.
Observe that since the first column of both V andW is v

0
= w

0
=

(1=
p
N)1, the sum of elements in the remaining columns of both ma-

trices is zero. The structure of 	 = V T�TW is therefore

	 =

1 0 � � � 0

0
... ?

0

(17)

where the question mark represents unknown entries.
In order to obtain upper and lower bounds over all possible IAs,

we relax the constraint that the matrix 	 in (16) equals to V T�TW

for some permutation matrix—�. The relaxation is done in two steps.
In the first step, we replace the discrete family of matrices 	 by the
continuous family of unitary matrices having a general structure as in
(17). In the second step, we replace the unitary requirement by a more
relaxed condition. We merely demand that the sum of squares of the
elements in each row and column is 1. We shall show that the second
relaxation still results in a unitary matrix and hence does not degrade
the tightness of the bounds.

In order to obtain the extreme values of the relaxed problem, we state
the following optimization problem, using the property that the sum of
squares of the elements in each row and column of a unitary matrix (	
in this case, with elements 	ij ) is equal to 1

min
	

=max
	

N�1

i=1

N�1

j=1

�i!j 
2

ij

subject to
N�1

i=1

 2ij = 1; j = 1; 2; . . . ; N � 1

N�1

j=1

 2ij = 1; i = 1; 2; . . . ; N � 1: (18)

Note that the first row (i = 0) and the first column (j = 0) are in-
dependent of the permutation and were omitted from the optimization
problem. We denote the solutions for the minimum/maximum prob-
lems by 	min=	max, respectively. The solution of the optimization
problems is given in [25]

Minimum value:
N�1

i=1

�i � !N�i

Corresponding to:

	min =

1 0 � � � 0 0

0 0 �1
... �1
0 :

:

0 �1 0

Maximum value:
N�1

i=1

�i � !i

Corresponding to:

	max =

1 0 � � � 0 0

0 �1 0
...

. . .

0 �1
0 0 �1

: (19)

Note that the matrices	min and	max are unitary. This implies that
the second relaxation did not worsen bounds tightness.

Applying these solutions to (18), the bounds on the channel distor-
tion, over all possible IAs, are therefore

1

2
�0!0�S+1

2

N�1

i=1

�i � !N�i�DC� 1

2
�0!0�S+1

2

N�1

i=1

�i � !i:

(20)

It turns out that the upper and lower bounds obtained here coincide
with the QAP results [25, Theorem 2.1 and 4.2, respectively]. How-
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ever, the preceding derivation allows us in the sequel (Section V-A.2)
to compare the QAP lower bound with a published lower bound.

Another representation of the bounds may be obtained by using the
fact that �0 = 1 and, as may be seen from (13), !0 = S + sk:

1

2N
1T � D̂ � 1 +

1

2

N�1

i=1

�i � !N�i � DC

� 1

2N
1T � D̂ � 1 +

1

2

N�1

i=1

�i � !i (21)

The first part of both inequalities is independent of the channel. The
second part depends on the eigenvalues of both the channel and the
balanced weighted distance matrix.

In conclusion, in order to find the lower and upper bounds, given
the channel transition matrix H , the VQ distance matrix D, and the a
priori probabilities matrix P , one should carry out the following steps.

1. From D and P , calculate the scalars si; i = 0; 1; . . . ; N � 1,
using (12), �i; i = 0; 1; . . . ; N � 1; S (14), and the weighted
distance matrix, ~D, using (13).

2. Calculate the eigenvalues of the channel matrix H(�i; i =
0; 1; . . . ; N � 1), and those of the weighted distance matrix
~D(!i; i = 0; 1; . . . ; N � 1).

3. Calculate the upper and lower bounds using (20) or (21), where
in the latter also (8) needs to be applied.

The upper and lower bounds in (20), (21), were obtained by using
2N constrains on the sum of squares of elements in each row and
column of the unitary matrix 	 = V T�TW . It is possible to add fur-
ther linear constraints, thus achieving tighter upper and lower bounds.
However, the solution turns out to be numerical rather than a closed
analytical formula.

IV. AVERAGE PERFORMANCE OVER ALL INDEX ASSIGNMENTS

Having found lower and upper bounds on the channel distortion, it is
also useful to obtain the average value of the channel distortion over all
possible IAs. The average value can help in ranking a given assignment.

From (16), this average value is given by

hDCi = 1

2N !
�

N�1

i=0

N�1

j=0

�i!j 
2
ij � S

=
1

2N !
�

N�1

i=0

N�1

j=0

�i!j

N�1

k=0

vkiw�(k)j

2

� S (22)

where the permutation is denoted by � and vki; w�(k)j are the elements
of the matrices V and W , respectively. It may be shown that the en-
semble average is

hDCi = 1

2
�0!0 � S +

1

2(N � 1)

N�1

i=1

�i

N�1

j=1

!j

=
1

2N
1T � D̂ � 1

+
1

2(N � 1)
[trace(H)� �0] � [trace( ~D)� !0]: (23)

Note that the average value in (23) corresponds to a matrix 	 with
the following structure:

	hD i =

1 0 0 � � � 0

0 � � � � � �

0 � � �
...

...
...

. . .
...

0 � � �

(24)

where � = �(1)=(
p
N � 1).

The matrix 	hD i in (24) is not unitary and therefore does not cor-
respond to any valid permutation.

Comparing 	hD i in (24) with the structure of the matrices 	min

and 	max that correspond to the lower and upper bounds (19), respec-
tively, one observes that the performance of a specific permutation cor-
responds to the geometric relations among the columns of the matrix
V and the columns of the matrix �TW . A permutation that aligns the
column of the matrix V with the columns of the matrix �TW , in direct
(reverse) order, results in “poor” (“good”) performance. A permuta-
tion that does not align the two sets of columns will typically results in
“average” performance. This geometric interpretation can help in ob-
taining future suboptimal IA algorithms. A suboptimal algorithm may
be based on a permutation matrix � in 	 = V T�TW that approxi-
mates	min in (19). Other geometric interpretations of the IA problem
may be found in [15]–[17].

V. SPECIAL CASES AND SIMULATION RESULTS

In this section, we examine several special cases and compare the
lower and upper bounds with the average distortion over all IA, as well
as with the distortion of assignments that were obtained in simulations.
We used the well-known index-switching algorithm [12], [13] to obtain
“good” and “poor” IAs. According to this algorithm, after selecting
an initial assignment, indices of codevectors are randomly exchanged.
When searching for a good (poor) assignment, the new assignment is
kept if it performs better (worse) than its predecessor.

A. Special Cases

1) A Uniform Scalar Quantizer and a Uniform Source Under the
BSC: We obtain here the bounds in (20) for the case of a L-bit (N =
2L levels) uniform scalar quantizer, whose support is [�1; 1], and a
uniform source, operating under the BSC. For the mean-squared error
distortion measure the resulting upper and lower bounds are

2(N � 1)(N + 1)

3N2
2q � DC

� 2(N � 1)(N + 1)

3N2
[1� (1� 2q)L] (25)

where q is the BER. It is interesting to see that for small values of q,
the ratio between the upper and lower bounds is L.

The lower bound coincides with the performance of the NBC, which
is an optimal assignment for this case, as shown in [28] and demon-
strated in [3], [6], [7]. The worst IA for this case is given in [29], re-
sulting in a channel distortion given by

DWIA = q(1� 2q)L�1 +
2(N � 1)(N + 1)

3N2
[1� (1� 2q)L�1]:

(26)
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Fig. 2. Upper and lower bounds and the average channel distortion, over all possible IAs, for a 3-bit PDF-optimized scalar quantizer and a Gaussian source under
the BSC. The bounds are compared with the best and worst assignments.

A numerical comparison between the performance of the worst IA
and the upper bound (25) reveals that the upper bound is 0.25 dB higher
for a 4-bit quantizer and only 0.13 dB higher for an 8-bit quantizer.

Using (22) for this case, the average distortion over all IAs is

hDCi = 2(N + 1)

3N
[1� (1� q)L]: (27)

For small values of the BER, q ! 0, the ensemble average ap-
proaches zero linearly with q

hDCi � 2L(N + 1)

3N
q; as q ! 0 (28)

This expression agrees with an asymptotic result given in [9].
2) Maximum Entropy Vector Quantizers Under the BSC: For the

special case of a maximum-entropy quantizer (equally probable quan-
tization regions) with a quadratic distortion measure and the BSC, an
asymptotic lower bound is given in [16]

DC � 4q

N

N�1

n=0

�Tn�n; as q ! 0 (29)

where �n is the representation vector of the nth partition region. We
define

Y = [�0 �1 � � � �N�1]:

We also assume, without loss of generality, that N�1

n=0
�n = 0.

To compare (29) with the proposed lower bound, we note first
that the channel matrix eigenvalues �i; i = 0; 1; . . . ; N � 1 are
(1� 2q)m; m = 0; 1; . . . ; L, each with multiplicity L

m
. We repre-

sent these eigenvalues by �i = (1� 2q)m ; i = 0; 1; . . . ; N �1, such

that m0 = 0;m1 = 1; . . . ;mL = 1;mL+1 = 2; . . . ;mN�1 = L.
Note that the eigenvalues are sorted in descending order. In this case,
the weighted distance matrix (13) is

~D =
2

N
D +

N�1

i=0

�Tk �k � �Ti �i � Ci + CTi

=
2

N

N�1

i=0

�Ti �i � Ci + CTi � 2Y TY

+

N�1

i=0

�Tk �k � �Ti �i � Ci + CTi

=
2

N
�Tk �k �

N�1

i=0

Ci + CTi � 2Y TY

=
4�Tk �k
N

1 1 � � � 1

1 1 � � � 1
...

...
. . .

...
1 1 � � � 1

� 4

N
Y TY (30)

where k is selected such that �Tk �k � �Ti �i.
One may verify that the term S for (30) is given by

S = 2�Tk �k � (2)=(N)

N�1

i=0

�Ti �i:

The first eigenvalue of ~D (corresponding to the eigenvector w0 =
(1=

p
N)1) is !0 = 4�Tk �k , and the sum of the eigenvalues of ~D

(sum of elements on the main diagonal) equals 2S. The remaining
N � 1 eigenvectors are orthogonal to 1 and since Y TY is positive
semidefinite, they are all nonpositive, !i � 0;8i 6= 0. More-
over, the sum of these remaining N � 1 eigenvalues is therefore
(�4)=(N) N�1

i=0
�Ti �i.
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Fig. 3. Upper and lower bounds and the average channel distortion, over all possible IAs, of a 4-bit uniform scalar quantizer and a uniform source under the BSC
with a (7; 4)Hamming error-correctng code. The upper bound is compared with a “poor” assignment obtained by simulations. The lower bound coincides with
the performance of the NBC.

Using the properties mi � 1; i = 1; 2; . . . ; N � 1 and !i � 0;
8i 6= 0, the corresponding lower bound is bounded by (for 0 � q �
0:5)

1

2
!0 +

N�1

i=1

(1� 2q)m � !N�1 � S

�
1

2
!0 +

N�1

i=1

(1� 2q) � !N�1 � S

= �q

N�1

i=1

(!N�i) =
4q

N

N�1

i=0

�
T
i �i (31)

where equality hold only for the trivial cases of q = 0 or L = 1.
Hence, for all cases of interest, the proposed lower bound is better than
the bound in (29), give in [16].

B. Simulation Results

1) A 3-bit PDF Optimized Quantizer and a Gaussian Source Under
the BSC: For 3-bit quantizers there are 8! = 40320 possible assign-
ments so that an exhaustive search is possible.We consider a 3-bit prob-
ability density function (PDF)-optimized scalar quantizer ([25, Ch. 4]),
for a Gaussian source and a BSC. The bounds obtained from (20) are
shown in Fig. 2. It can be seen that the slope of the lines is roughly
10 dB/decade, i.e., reducing the BER by a factor of 10 results in a 10-dB
lower distortion. The channel distortion is approximately proportional
to the BER. The upper bound is about 0.3 dB higher than channel dis-
tortion due to the worst possible IA. The lower bound is 0.8 dB lower
than the distortion for the best assignment (found here by exhaustive
search).

2) A 4-Bit Uniform Quantizer and a Uniform Source Using a (7; 4)
Hamming Error-Correcting Code Under the BSC: Consider a 4-bit
uniform scalar quantizer and a uniform source. The digital information
is sent through a BSC utilizing a (7; 4)Hamming error-correcting code
[26]. The channel matrixH is different from the BSC case.We examine
a single entry of the channel transition matrix H in this case. Assume
the encoder needs to transmit the index i. The corresponding Hamming
codeword c(i) (7 bits) is sent through the BSC. Each Hamming code
decoder output c(j) is a result of one of eight possible BSC outputs
(Hamming code decoder input). These are theHamming codeword c(j)
and codewords that are different from c(j) by 1 bit only. Each entry of
H is therefore a sum of eight probabilities

fHgi;j = Probfindex j received j index i transmittedg

=
d (k;c(j))�1

Probfk received j codeword c(i) transmittedg (32)

The bounds are shown in Fig. 3.
It can be seen that the slope of the graphs is 20 dB/decade, i.e., re-

ducing the BER by a factor of 10 results in a 20-dB lower distortion.
The channel distortion is approximately proportional to the square of
the BER. The upper bound is about 0.5 dB away from the worst random
assignment (out of 106 IAs) found in simulations. The proposed lower
bound coincides with the performance of the NBC. The optimality of
the NBC for this case was presented in [33]. The ratio between the
upper and lower bounds is approximately 3.6 dB, compared with 6 dB
for the BSC without channel protection. The implementation of the
channel protection brought the bounds closer together, decreasing the
effect of IA.
3) Two-Dimensional PDF-Optimized Vector Quantizer for a

Gauss–Markov Source Under the BSC: We examine here a set of



2234 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

Fig. 4. Upper and lower bounds and the average channel distortion, over all possible IAs, of an 8-bit L*a*b*-space image vector quantizer under the BSC.
The bounds are compared with “good” and “poor” assignments attained in simulations.

two-dimensional vector quantizers, designed for a Gauss–Markov
source, with correlation � = 0:5, and different sizes. The vector
quantizers were designed using the well-known LBG algorithm [1],
[27]. The digital information is sent through a BSC.

The results obtained are shown in Table I.
It can be seen that the distance between upper and lower bounds

increases with the complexity of the quantizer. The gap between the
upper bound and the worst assignment found in simulations as well
as the gap between the lower bound and the best assignment found in
simulations (out of 106 IAs) also expand with VQ size.

Unfortunately, due to the huge amount of possible assignments and
the suboptimality of the index-switching algorithm, we cannot state at
this point if these gaps are due to an inadequate index-searchingmecha-
nism or as a result of insufficient bound tightness (or both). As seen ear-
lier, the error-correcting code brought the bounds closer together.When
an error-correcting code is applied, the relatively small ratio between
the average distortion and the lower bound suggests that in this case
one can resort to just choosing the best of several random assignments.
4) Three-Dimensional 8-Bit PDF-Optimized Vector Quantizer for

Quantizing Images in the L�a�b� Color Space: The L*a*b* color
space was developed by the CIE [31] in order to better match color
representation to human color perception. Pixel colors are organized
in three components: an achromatic (luminance) component L*, and
two chromatic ones: a* and b*. Because color difference perception
over the L*a*b* color space is approximately uniform, the squared
Euclidean distance is considered to be an appropriate distortion mea-
sure in this color space. The nonlinear transformations between RGB
and L*a*b* spaces can be found in [31]. We examine here an 8-bit,
N = 256, vector quantizer from [32]. The computed bounds are shown
in Fig. 4.

TABLE I
BOUNDS CHARACTERISTICS FOR TWO-DIMENSIONAL VECTOR QUANTIZERS

DESIGNED FOR A GAUSS–MARKOV SOURCE, WITH CORRELATION � = 0:5.
(NOA—NUMBER OF POSSIBLE ASSIGNEMNTS, UB/LB—UPPER/LOWER

BOUND, AD—AVERAGE DISTORTION)

The upper bound is about 0.6 dB higher than the channel distortion
due to the worst IA obtained in the simulations (out of 106 IAs). The
lower bound is 1.5 dB lower than the distortion for the best assign-
ment obtained in simulations. The ratio between the upper and lower
bounds is 8.8 dB, suggesting that a significant performance gain can be
achieved by a good IA.

VI. CONCLUSION

In this correspondence, we have presented upper and lower bounds
(and a related expression for the average performance) of the distortion
due to channel errors for vector quantizers operating under channel er-
rors, over all possible IAs. These bounds are based eigenvalues argu-
ments and coincide with g QAP problem bounds.

The proposed bounding technique enables a comparison of the QAP
lower bound to a previously published lower bound that was derived
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for maximum entropy quantizers. The QAP lower bound is proved to
be tighter.

The bounds enable the VQ designer to estimate the gain that may
be obtained by a search for an efficient IA. Together with the average
performance, the designer may evaluate the performance of a given IA.

Analytical and numerical examples were given for the BSC, with
and without error correction. For 3-bit (8-level) quantizers, the bounds
were compared with the best and worst assignment using an exhaus-
tive search. For 4-bit and higher resolution quantizers, the bounds were
compared with “good” and “poor” assignments obtained in simulations
using a suboptimal index-switching algorithm.

For low- and intermediate-size vector quantizers, under the BSC,
the bounds are reasonably close to the performance of the assignments
found in simulations.

For large size VQs, there is a larger gap between the bounds and the
simulation results. The number of possible IAs (N !) does not allow
an exhaustive search while the suboptimality of the index-switching
algorithm leave the tightness issue of the proposed bounds to further
study.

Utilization of error correction decreases the gap between the lower
and the upper bounds, and both bounds are tighter. This result agrees
with the intuition that channel protection reduces the importance of IA.
Nevertheless, a good IA improves the quantization system performance
and does not add complexity to its implementation.
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