JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
Vol. 5, No. 1, March, pp. 29-40, 1994

Morphological Image Coding Based on a Geometric Sampling
Theorem and a Modified Skeleton Representation*

GUILLERMO SAPIRO AND Davip MALAH

Technion—Isruel Institute of Technology, Department of Electrical Engineering, Haifa 32000, Israel

Received May 8, 1991; accepted October 21, 1992

A new approach for gray-level image coding using binary mor-
phological operations on the image bit-planes is presented. This
approach is based on a Geometric Sampling Theorem (GST), and
on a modified morphological skeleton. The theorem, which is
proved in this paper, states conditions for the reconstruction of the
boundary of a continuous two level image from a unique subset of
points of its skeleton representation. This set of points, referred to
as essential points, is found to play an important role in the skele-
ton representation of discrete binary images as well. The modified
morphological skeleton (MMS} uses an exponentially increasing in
size structuring element. The computational advantage of this
representation was previously reported. A new approach to its
development is presented here, and its advantage in image coding
is demonstrated. The coding scheme consists of the following
steps: First, the image is preprocessed by an error-diffusion tech-
nique in order to reduce the number of bit-planes from 8 to 4
without significant quality degradation. The pixel values are sub-
sequently converted to Gray-code. The bit-planes are represented
by the MMS. Redundancy in this representation is reduced using
an algorithm motivated by the GST. These reduced modified mor-
phological skeletons are coded with an entropy coding scheme
particularly devised for efficient skeleton coding. The possibility
of the introduction of geometric errors to reduce the bit-rate is also
discussed. Compression ratios of up to 11:1 were obtained for

satellite images. © 1994 Academic Press, Inc.

I. INTRODUCTION

Medial axis and skeleton representations have re-
ceived much attention, both in theoretical [1-4] and in
practical aspects [5]. This paper concentrates on recon-
struction properties of the skeleton, and presents a Geo-
metric Sampling Theorem (GST) [6]. The theorem deals
with the representation, via a skeleton subset, of sets in
the continuous two dimensional space R?. In the second
part of the paper, a new approach to gray-level image
coding is presented [7], which is based on the GST and on
a modified morphological skeleton which uses an expo-
nentially increasing in size structuring element [8] instead

* This article was originally scheduled to appear in the Mathematical
Morphology special issue of Journal of Visual Communication and
Image Representation {(Vol. 3, No. 2, June 1992).

of the linearly increasing in size element that is com-
monly used [5, B].

The GST states conditions for the reconstruction of the
boundary of a continuous two level image (i.e., a set of
R?) from a unique subset of points of its skeleton repre-
sentation. These points are called here essential points.
The analogy between this theorem and the classical Sam-
pling Theorem is given as well. In the case of discrete
binary images (i.e., sets of Z2), we found that the essen-
tial points of the discrete skeleton convey most of the
information required for reconstruction. Based on this
fact, we develop an algorithm for efficient computation of
the minimal skeleton [3] of discrete binary images (i.¢., a
subset of the skeleton whose points are sufficient for ex-
act reconstruction, and which satisfies the condition that
the image cannot be recovered from any subset of it).

Recently, Maragos and Schafer [5] presented a scheme
for binary image coding which exploits the geometry of
these images via morphological skeleton representation,
In [8], Schonfeld and Goutsias presented a geometric-
step morphlogical skeleton (GSMS), which results in an
exponentially increasing in size structuring element.
They proved that, when this skeleton is implemented on
a pipelined morphoelogical processor (PMP), its computa-
tional complexity is less than that in [5]. We present here
a new approach for developing what we denote as a mod-
ified morphological skeleton, which was found to be a
special case of the GSMS. This approach was motivated
by the fact that when fewer skeleton subsets are ob-
tained in the image representation, the compression ratio
can be increased (unlike the computational motivation in
[8]).

The approach used for gray-level image coding is as
follows: The image is first pre-processed by an error dif-
fusion technique [9] in order to reduce the number of bit
planes from 8 to 4, without significant quality degrada-
tion. The pixel values are subsequently represented in
Gray-code in order to obtain more uniform bit-planes.
These bit-planes are represented each by means of a
modified morphological skeleton, and redundancy in this
representation is reduced using an algorithm which is
based on the GST. These skeletons, which are sparse
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representations of the bit-planes, are coded with a combi-
nation of different entropy coders particularly devised for
efficient skeleton coding. These include Huffman coding
of the number of consecutive lines having no skeleton
points, and run-length followed by Huffman coding for
the remaining lines. Geometric errors in the bit-planes
can also be introduced for bit-rate reduction. In such a
case, postprocessing operations for quality enhancement
of the image, such as random filling of undefined areas in
the partially reconstructed bit-planes, are also suggested.

The remainder of this paper is organized as follows:
Basic concepts of mathematical morphology are given in
Section II. Section IIl introduces the skeleton of a con-
tinuous image and presents the GST. Section IV presents
the morphological skeleton of a discrete image and de-
scribes the modified morphological skeleton. In Section
V, description of the coding algorithm is given. Experi-
mental results are presented in Section VI, and finally a
summary and conclusions in Section VII.

II. CONCEPTS OF MATHEMATICAL MORPHOLOGY

Let R be the set of real numbers, Z the set of integers,
and E the Euclidean space R? or Z2. Upper case letters
stand for subsets of F, and lower case letters for elements
or points of E. The simplest morphological transforma-
tions are based on the Minkowski set addition and set
subtraction [1, 10]. The morphological dilation, derived
from the Minkowski set addition, is defined [1, 10, 11] as

A®B=la+bacAber=Ja,

bER

where X, = {x + y: x € X} (translate of X by the vector
¥). B is called the structuring element. In the definitions
presented here (and in Section IV), B 1s assumed to be
symmetric [1, 10, 11] (see also Section V.B).

From the Minkowski set subtraction. the second basic
morphological transformation, erosion, is defined [1, 10,
11] (different definitions can be found in the literature,
but in the case of symmetric structuring elements, all
those definitions are equivalent) as

) 4, @)

bEB

ASB=(A"® By =

where X stands for set complement. In other words, the
crosion of A is the locus of the points a for which B, C A.

From the combination of these dual morphological op-
erations, a new pair of dual morphological transforma-
tions is derived: opening and closing [1, 10, 11]. Opening
is defined as

A B=(AGCB®B (3)

and closing as
A*B=(ASDB)S B = (A0 B). (4)
It can be shown that

A°B ={x € A: for some y, x EB, C A} = U B,.
{.VIB)JQA}
)

That means that the opening of A by B is the union of all
translations of B that are contained in A (geometric char-
acterization of the closing operation is immediate from its
duality with opening). Opening is the morphological
smoothing of the set A (every place where the given
structuring element does not fit the set is eliminated). In
the same way, closing is the morphological smoothing of
the set complement A¢. For properiies of these opera-
tions and their extensions to sets of RY or Z¥ and to
multivalued functions, see [1, 10, 11].

III. MORPHOLOGICAL SKELETON AND A GEOMETRIC
SAMPLING THEOREM

A. Skeleton of Continuous Images

Let X be a closed set in R2, The curvature x(p) at a
point p of the boundary 8X of the set X is defined as the
inverse of the radius of the osculating disk tangent to 4X
at p [12]. We assume that the Convex Hall of X¢ is equal
to R? (a necessary condition for the exact reconstruction
of X [1-4]) and that «(-) of 3X is well defined everywhere,
except at a finite number of points, where it may have
only one-sided tanpents. We denote these sets of bound-
ary points by I'(X), I'(X) C aX. The subset of points in
I'(X) for which the correspondent interior angle is con-
cave (e.g., the points &, fin Fig. 1) is denoted by £(X).

g

FIG. 1. A continuous set X with points which do not have well
defined curvature: I'(X) = {a, b, . . ., g}, &(X) = b, f}.
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We also define ¥, 4x. pU, where U is the unit disk in
R,

Let D(x, p) be a closed disk of center x and radius p = 0
{(in a two dimensional Euclidean space). Then a maximal
disk in X and the skeleton of X are defined as follows:

MaximMaL Disk. A maximal disk D(p, p,) is one
which is included in the object X, but not in any other
disk in X.

SKELETON IN R%:  The skeleton ¥(X ) of an object X C
R%is defined as the family of centers of all maximal disks
in X [1-4, 13].

Hence, if y € ¥(X), then D@}, p,) denotes its corre-
sponding maximal disk with radius p,; i.e., p; is the Eu-
clidean distance from ¢ to a.X.

It is well known [1-4] that under the assumed condi-
tions, X can be reconstructed from the set ¥(X) together
with the set of radii p,, i.e., from the skeleton pairs

(‘p! p'J!):
\J Dpw, o). ©)

yewiX)

X:

B, A Geometric Sampling Theorem

Not all skeleton points are necessarily needed for exact
reconstruction. We are interested in a set of points
¥ (X)) C ¥(X), denoted as the minimal skeleton [5],
which guarantees exact reconstruction of X, and which
satisfies the condition that X cannot be recovered from
any subset of ¥,(X). Such a set exists, because in the
worst case ¥,(X) = ¥(X). Similarly, we are interested
in the minimal set for recovering o.X.

For demonstration, Fig. 2 shows a set in R? with its
skeleton. The skeleton of the set X is the closed segment
[a, bl;ie., ¥(X) = [a, b] (see [2, Chap. 11]). In this case,
clearly, the two marked points {a, b}, together with their
corresponding radii {p,, p,}, are sufficient for object re-
construction and constitute a minimal skeleton: ¥, (X) =
{a, b} and hence ¥, (X) C ¥(X).

Before proceeding, we also define the following:

FIG. 2. Example of a skeleton {dashed line) and a minimal skeleton
(points a, b): V(X)) = {a, b}.

ESSENTIAL POINT: A skeleton point s, s € W(X), is
an essential point if and only if there exists a point p in X
such that the maximal disk D(s, p;) is the only one which
contains it. Le.,

5§ € ¥(X) is an essential point
{3 pEX, p € D(s, p,):

(7N
VY EVX), ¢ #s5s=>p&D®W,py).

Also, for any point § € T(X\&(X), s is essential with a
maximal disk D(s, p,) of radius p, = 0 (e.g., points a and
d in Fig. 1).

MiNIMAL RECONSTRUCTION. Let 5(X) be the unique
set of essential points in X. Then X'* denotes the minimal
reconstruction defined by

x+2 | b, po),

SESA)

X*CX. (8)

BouNDARY EsSENTIAL PornT.  Similarly, we say that
apoint s € V(X)) is a boundary essential point if and only
if there exists a point p on aX (the boundary of X) such
that the maximal disk D{x, p.) is the only one which
contains it. I. e.,

s € ¥(X) is a boundary essential point
{3 p € 04X, p € D(s, p):

9
VwE‘I’(X),tb#s?pED(t#,m).( )

The notion of essential points and the relation between
S(X) and ¥ ,(X) are illustrated in Figs. 1 and 2 as follows:

In the case of the set in Fig. 2, the two marked points a,
b are essential and hence W¥,(X) = S(X). The points in
the open segment (a, b) are in V{X) but not in S(X).

In the set of Fig. 1, the points b and f are each covered
by more than one maximal disk centered at nonessential
skeleton points. Hence, ${X') is not sufficient for the re-
construction of X, and S(X) C ¥,,(X).

The importance of essential points is evident from
these examples and from the following theorems.

Lemma 1 gives the relation between the set of essential
points S(X), and the minimal skeleton ¥, (X):

LemmMa 1. All essential points are in ¥, (X).

Proof. This is a direct consequence from the defini-
tions of the skeleton and the essential points, since the
maximal disk corresponding to an essential point contrib-
utes at least one point which is not included in any other
maximal disk in X.

Hence, we conclude that S(X) C ¥, (X). ®

THEOREM 1. x € X is a boundary essential point if
and only if x is an essential point.
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a b

FIG. 3. Different types of skeleton points and the tangent points of
their maximal disks with the boundary. (a) Maximal disks correspond-
ing to essential points ( p, g, r). (b) Maximal disk of a nonessential point

(p).

Proof. = From the definitions, if x is boundary es-

sential, then x is essential.
< Given an essential point x, we have to prove that x

is boundary essential. For all z € W{(X}, D(z, p,) N 8X #
7 (see marked points in Fig, 3). If D(z, p.), with z € ¥(X)
and p, > 0, touches 4X only at points with curvature not
well defined, i.e., D(z, p;) N aX C £(X); then z cannot be
an essential point (all the points of its maximal disk are
covered by more than one maximal disk). Therefore, for
any essential point x € W{X), its corresponding maximal
disk D(x, p,) touches the object boundary at least at one
point a, (see Fig. 4), such that &, € D(x, p,) N 4X and a,
€ 0X\&(X). If we prove that D(x, p,} is the only maximal
disk which contributes to a,, then x is also a boundary
essential point.

et us prove now that D(x, p,) is the only maximal disk
which touches aX at a,, when «(a,) is well defined. We
have to show that there is no other y € ¥(X), x # v, such
that a. € D(y, p,) M dX. Suppose such a y does exist.
Since the curvature x{(a,) is well defined, then both D(x,
px) and D(y, p,) are tangent to 4X at a,; and x, y € N, ,
where N, stands for the normal to X at a point p € 0X
with «(p) well defined. This means that D(x, p,) and
D(y, py) are nested disks (see Fig. 4), a contradiction to
the hypothesis that they are maximal disks (x, y € W{(X)).
Then, D(x, p,) is the only maximal disk which contains a,
€ gX, and x is a boundary essential point, =

The meaning of this theorem is that an essential skele-
ton point contributes to X if and only if it contributes to
aX. Therefore, when looking for an essential point, only
contributions of maximal disks to the set boundary need
to be checked.

THEOREM 2 (The Geometric Sampling Theorem). Let
X be a set in R2, with boundary 0X, and minimal recon-

FIG. 4. Nested circles. Only the outer one corresponds to a maxi-
mal disk.

struction X*. Let Y, be the set obtained by opening X
with a disk of radius p. Then

(a} X* covers the whole boundary (0X) of X, except

for a finite number of points.

(b)Y The subset of S(X) containing essential points with
corresponding radii r = p, is sufficient for the reconstriuc-
tion of the whole boundary of ¥, except for a finite num-
ber of points (these points are the same as in the first part
of the theorem).

Proof. (a) Any boundary point a, € 4X belongs at
least to one maximal disk D(x, p,} (Eq. (6)}, x € ¥(X). In
the proof of Theorem 1 we showed that if «{a,) is well
defined, then x is an essential point (or a boundary essen-
tial point). Therefore, X * covers at least all the boundary
points with well defined curvature, i.e., dX\£(X), and the
number of uncovered points is at most # £(X) < o,

For coverage of the uncovered points (a subset of
& X)), we have 1o add to the reconstruction set, skeleton
points with corresponding maximal disks touching 84X
just at points in £(X'}). Each one of these maximal disks
touches oX at least at two points; therefore the number of
skeleton points that must be added is less than or equal to
[# £(X))2.

(b) This is a direct consequence from the first part of
the theorem and from the fact that ¥, = Uycqr) p,=p D
p (1.2, W

From the above two theorems we see the importance
of the unique set S(X) for the reconstruction of X, since
cach essential point contributes to 4X and almost all of
aX is covered by the maximal disks of S(X). By the sec-
ond part of Theorem 2 one is motivated to denote the
morphological operation X ° pB as a geometric low pass
Jilter, in analogy to the filter used in classical signal pro-
cessing, with bandwidth being replaced here by the in-
verse of the radius of the maximal disk [2, 5, 14].

As stated in Theorem 2, when X is opened by pB
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(vielding Y,), parts of the skeleton are eliminated. This
means that fewer data need to be coded for reconstruc-
tion of the smoothed set ¥,. For non-error-free compres-
sion tasks, it is very important to estimate this reduction
in the data needed for representation as a function of p
(which determines the set degradation). Related to this
issue, a lower bound on the length of skeleton arcs elimi-
nated by the opening operation is given for continuous
sets in the Appendix. For discrete sets, simulation results
are given in Section VI.

Extensions of the theorems, and an extended analysis
of the analogy between these theorems and the classical
Sampling Theorem, are given in [14].

IV. MORPHOLOGICAL SKELETONS OF
DISCRETE IMAGES

A. Basic Morphological Skeleton

The skeleton SK2(X) of a discrete set X (a subset in Z?)
can be defined in a way similar to the skeleton of a contin-
wous set [1, 5, 13]. This skeleton is related to a discrete
structuring element B, which replaces the disk used in
the continuous case. Thus, the discrete skeleton is de-
fined as follows:

MAXIMAL STRUCTURING ELEMENT. If (nB), repre-
sents the subset obtained after dilating B n-times and
shifting the result by z, then the element (nB), is maximal
if and only if it is included in X and there is no other
element (mB),, m > n, such that (nB), C (mB), C X [1, 5].

SKELETON IN Z2, The skeleton SK8(X)of a set X C
Z? is defined as the family of centers z of all maximal
structuring elements (#B), in X [5].

Lantuejoul [13] (see also [1, 2, 5]) proved that the skei-
eton can be computed via basic morphological opera-
tions. Before introducing the modified morphological
skeleton, we first present the discrete version of Lantue-
joul’s algorithm, as used by Maragos and Schafer in {5}
for binary image coding. Assume X to be a discrete set,
and B a discrete structuring element (i.e., sets in Z2),
then the skeleton SK5(X) is given by (I, 5].

N{B)
skaxy = | s&x, (10)
n=0
where
SEX)=(XSnB)- (XS nB)-B (11a}
n=0,1,...,NQB {1ib)
N(B) = max {n: X © nB # J}. (11¢)

The subset SZ(X) is called the nth skeleton subset of X,
computed with the structuring element B. The nth skele-

ton subset S5(X) contains all the points z € X (and only

those points) such that the element (nB), is maximal in X

[5]. Therefore, SK5(X), which is computed with the fixed

structuring element B, contains ali the centers z of maxi-

mal structuring elements (nB),, # = 0,1, . . ., N(B).
Opened versions of X can be obtained via

N(B)

| sZx) @ nB,

n=k

XokB = (12)

where 0 = k& = N(B). Hence, if £ = 0 the original image is
reconstructed.

Maragos and Schafer {5] pointed out some of the most
important properties of the discrete morphological skele-
ton together with a very efficient algorithm for computing
1t.

B, Modified Morphological Skeleton

The morphological skeleton just presented is computed
via the structuring element B, having a fixed shape, but
linearly increasing in size (as #B is used in equations (11)
and (12)}. We describe next a morphologicat skeleton, for
which the size of the structuring element increases expo-
nemtially by doubling its size with each subsequent skele-
ton step (n). Le., the size of the structuring element in
step n + 1 of the skeleton computation is twice as big as
the size of the onc used in step n (the shape remains
unchanged). This representation is motivated by the fact
that when larger structuring elements are used, fewer
skeleton subsets are obtained (Eq. (11¢)), making possi-
ble in this way a higher compression ratio (see next sec-
tion). In the modified morphological skeleton of X, each
skeleton subset is computed with the largest possible
structuring element; i.e., an element AB such that if ¥ =
XokB,then Yo kB = Yand Ye(k+ 1)B C Y. Note that in
this case, S§5(Y) = @, but SF*V8(¥) = @, where STHW)
stands for the set of skeleton points whose contribution
via their corresponding maximal structuring element is
less than mB (those are skeleton points of *‘radius zero,”
see Eq. (11)), From Eq. (12) we get

X=X-B~+ Skx) (13)
and
N(B)
x.B=|J six)9©nB (14)
n=1
N(H)
= |J skx)@nB + s¥x) @ B,
n=21
therefore

XoB=X-2B+ S¥X)®DB. (15)
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Now, from Eqgs. (10)—(12}), we can decompose X< 2B ina
different way,

N(zZB)
x-28=|J $¥x) @ n2B (16)
n=1
= X o 4B + $1%X) & 2B,
Where S22(X), n = 1,2, . . ., N(2B), are the skeleton

subsets of X computed with the structuring element 2B
(instead of continuing the computation with the structur-
ing element B). Note that the union goes from n = [ due
to the use of 2B as the structuring element in the skeleton
computation of the set X o 28 (if a larger structuring ele-
ment — kB, k > 2, is attempted, it could not guarantee
that S§2(X - 2B) = @).

Using Eqgs. (13)-(16) we can therefore write

X=X-4B+ S (X)® 2B+ S¥HX)D B + S&(X).
(17

Subsequently, X = 4B can be decomposed using 4B as a
structuring element (Eqs. (10)-(12)), and this procedure
can be continued by doubling the size of the structuring
element at each step. We obtain this way the modified
morphological skeleton MS(X} [6, 14],

NuriB)
Msexy = \J Mx), (18)

n=0Q

where

MyX) = S§(X) (19a)
M(X) = $TX), n=1,...,NulB (19b)
Bm & 218, n=1,...,Nu® (19¢)
Ny(B) = max {n: X © 2" 'B » J}. (19d)

The skeleton subset M,{X) (n = 1) contains all the points
z € X (and only those points) such that the element
(27-1B), is maximal in X. Therefore, MS(X) contains all
the centers z of maximal structuring e¢lements (2718}, n
=1,2,. .., NyulB), as well as the subset My(X) which
contains skeleton points of “‘radius zero.”” We observe
that with this modified morphological skeleton, fewer
skeleton subsets are obtained due to the use of an expo-
nentially increasing size structuring element, since
Nyu(B) = [loga N(B)] < N(B).

The image can be reconstructed from the modified
morphological skeleton as

Nu(B)

X+ Bk = U IM(X) © B,

n=k

(20

where 0 = k = Ny(B). Hence, for k = 0 with B©) & {0,
M}, the original image is reconstructed.

As pointed out in the introduction, the modified mor-
phological skeleton is found to be a special case of the
geometric-step morphological skeleton (GSMS) pre-
sented in [8]. It is also possible to derive it from the
general morphological representation presented in [15)
(see [14]). The motivation for deriving the modified mor-
phological skeleton, as explained at the beginning of this
section, is quite different from the motivation for deriving
the GSMS, resulting in a different, more specific, devel-
opment method, Thus, in addition to the computational
advantage of the madified morphological skeleton, as re-
ported in [8], it has an advantage in coding as presented
here.

V. GRAY-LEVEL IMAGE CODING

Figure 5 presents the block diagram of the coding algo-
rithm. We next describe each of the coder stages.

A. Preprocessing

The aim in using the preprocessing stage is to represent
the original image in a form which is more appropriate tor
our coding method.

The first step in this stage reduces the number of bit
planes via the Floyd—Steinberg error diffusion algorithm
[91. We found that when an 8-bit image is reduced to a 4-
bit one with this method, a reasonably good quality image
is obtained (in contrast with the poor quality obtained by
simple truncation). The image can be reduced to a differ-
ent number of bit-planes, depending on the desired qual-
ity and bit-rate, but 4 bits were found to provide a good
compromise, With this technique we eliminate the least
significant bit-planes of the 8-bit image, which due to
their random-like structure, are typically difficult to com-
press. Thus, using 4 bit-planes with error diffusion, the
compression ratio is increased with no significant degra-
dation. Subsequently, pixels in these 4 bit-planes are rep-
resented in Gray-code, obtaining more uniform bit-planes
which improves the coding algorithm performance.

The original image can also be prefiltered with a two-
dimensional 3 X 3 median filter or with a morphological
filter before the error diffusion step. On the basis of the
Human Visual System properties [16, 17], such filters
improve the coder performance without significant
changes in wvisual quality (see experimental results
section).

B. Bit-Plane Representation

Each one of the four bit-planes obtained after the pre-
processing stage is represented by the modified morpho-
logical skeleton described in the previous section (Eqs.
(18)-(20)). The bit-planes’ geometric structure is very
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S
FIG. 5.

general and no preference for any special structuring ele-
ment can be pointed out a priori. Therefore, we used a 3
% 3 square as the basic structuring element (B) which is
related to an 8-cell-neighborhood and is very frequently
used in morphological skeleton algorithms [T, 5, 11].
Usually, no more than 6 skeleton subsets were obtained
for the different bit-planes (Ny(B) = 5, see Eqs. (18) and
(194)).

C. Skeleton Reduction

The morphological skeleton (as well as the modified
meorphological skeleton) is a redundant representation,
since some skeleton points can be removed and exact
reconstruction of the image from the reduced morpholog-
ical skeleton can still be obtained. Maragos and Schafer
(5] pointed this out and proposed an algorithm for elimi-
nating redundant skeleton points. However, their algo-
rithm does not always find the minimal possible number
of skeleton points which still allows reconstruction. Qur
approach to removing redundant skeleton points is based
on their algorithm but is improved by using resuits from
the Geometric Sampling Theorem proved in Section II.

Essential points of a discrete skeleton can be defined in
a similar way to the essential points of a continuous skel-
eton:

DiscrRETE ESSENTIAL POINT. A skeleton point 5, s €
MS(X), X C Z2,is a discrete essential point if and only if
there exists a point p in X such that the maximal element
corresponding to s is the only one which contains it.

Discrete essential points can be found via a “‘voting
process’” similar to the one used in |5] for the calculation
of minimal skeletons: For each subset #, a binary func-
tion k.(i, j), whose value is equal to one at points (i, j) €
B(n) and zero everywhere else, is created. This function
is called the characteristic function of the set B(n) [5].
Then, for each », &, is shifted to all points of M, {(X). The
contributions of the shifted &, are added algebraically for
all the points of M,(X) and for all n, obtaining a multival-
ued function f{X). In order to check if a skeleton point (r,
1) € M,(X) is essential or not, we check if the value of
SX) at one of the positions given by the characteristic
function k, shifted to (r, 1) (i.e., k,(i — r,j — 1)), is equal to
one. If the answer is positive, that skeleton point is es-
sential. If all the values are =2, then that skeleton point is
not essential.

Computation of the multivalued function f(X) requires
one pass through all skeleton points [5]. Searching for the

Block diagram of the proposed morphelogical image coding algorithm.

essential points requires a second pass through skeleton
points. In contrast with the algorithm presented in {5] for
minimal skeleton computation, the function f{X) is not
altered during the second pass (reducing the algorithm
complexity}, and the result does not depend on the scan
order (since the set of essential points is unique by defini-
tion). Also, for storing the function f(.X), just two bits are
needed, since in order to decide whether a skeleton point
is essential or not, one needs to know onty if f(X) is equal
to zero, one, or greater than one (in [5], the exact value of
" fIX} is needed).

Simulation results show that the discrete essential
points constitute only about 10% of all skeleton points.

A dual Geometric Sampling Theorem for discrete im-
ages is not known; i.e., a theorem which relates the dis-
crete minimal reconstruction X * (defined as in the contin-
uous case) to the discrete set X is not known. However,
we found that the essential points of a discrete skeleton
do reconstruct most of the image (typically close to 90%).
Therefore, the set of essential points is almost sufficient,
and we have to care only about the “‘optimal’’ coverage
of a small part of the image (typically 10%) instead of the
“‘optimal’” coverage of the whole image as in [5]. Thus,
after the essential points are found, the resulting search
space is much smaller than the original one, and a solu-
tion closer to the optimal one can be found using simpler
methods. We decided to select the additional skeleton
points (i.e., those needed in addition to the essential
points} according to the contributions of their corre-
sponding maximal element to the partial reconstructed
image (see Eqns. (6), (12), and (20)). We denote by
M (X) the reduced skeleton subset obtained from the
essential points of M,(X) and the additional nonessential
points that were added, as explained above, for exact
reconstruction. Then, M{X) C M,X), and typically
Card [M(X)] < Card [M,(X)] (Card [-] stands for the
cardinality of the set). Hence, each of the bit-planes is
completely represented (i.e., error-free) by its reduced
modified morphological skeleton (RMMS):

NiiB)

RMmsxy = | M0

n=0

2n

NardB)

x = J M) @ ).

n=0

(22)

Opening versions can be obtained in a form similar to
Eq. (20).
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Before proceeding with coding the RMMS, we point
out that simulation results suggest that a discrete version
of Theorem 1 may be valid. Therefore, when checking if
a skeleton point is essential or not, it appears to be
enough to check the coniribution of its maximal element
to the boundary, thereby reducing the computational
complexity of the presented skeleton reduction approach
{this complexity is linear in the maximal structuring ele-
ment size mnstead of guadratic as in [5]).

D. RMMS Coding

Each skeleton subset M (X) of the RMMS bit-plane
representation is coded as a full size binary image (which
is generally very sparse}. Such an image has a value of
one at (i, j) if (1, j) is a point in M ;{X), and a value of zero
everywhere else. These binary images are coded one af-
ter the other, in an decreasing (or increasing) order of a.
Giving an apriori order, no coding of the size of B(n} is
needed. Better compression ratios were obtained when
coding the RMMS this way instead of coding it as a multi-
level image, where the level indicates the corresponding
radius. Coding the RMMS as a set of binary images is
also more appropriate for bit-plane coding when geomet-
ric errors are introduced (see next).

Two different entropy coding schemes are used: one
for coding lines in the binary images (which represent
skeleton subsets) having no skeleton points (empty
lines), and another for the remaining lines. First, a
Huffman code for the number of consecutive empty lines
is generated, by which the exact position of nonempty
lines can be pointed out. The position of each skeleton
point in its corresponding nonempty line is then coded by
run-length and Huffman coding.

This coding strategy was found to be very efficient for
RMMS coding, because of their special structure as men-
tioned above. An improvement in the compression ratio
was obtained using the RMMS representation instead of
the original morphological skeleton representation pro-
posed by Maragos and Schafer [5], mainly due to the
reduction in the number of skeleton subsets (see next
section for compression results).

By introducing geometric errors in the different bit-
planes, the compression ratio can be increased. These
errors correspond to the omission of RMMS subsets
MNX), n<r= Nyu(B) + 1, where ris selected according
to the bit-plane importance (for more significant bit-
planes, r is small or even zero, i.e., no RMMS subsets are
omitted); obtaining with this method smoothed versions
of the form X o B(¥) of the bit-planes (equation (20)). If
just the smoothed bit-plane were coded, missing points of
X (X ¢ B(r) C X) would appear in the reconstruction as
part of the background. This could cause considerable
degradation of the subjective image quality. To circum-
vent this problem, we coded the smoothed versions of

both X and its complement, X<, (i.e., both RMMS(X) and
RMMS(X°) are computed and coded), and subsequently
fill-in randomly the undefined regions or **holes’” (Fig. 6).

VI. SIMULATION RESULTS

To evaluate the performance of the proposed coding
scheme, it was simulated on a Vax Station 3200, which is
hosting a Gould IP8500 image processing and display sys-
tem. Since the techniques used in the proposed algorithm
(e.g., error-diffusion) are not based on energy minimiza-
tion (in contrast to transform coding [18]), the perfor-
mance is evaluated only on the basis of subjective quality
of the images, i.e., what the image ‘‘looks like™ to the
observer [16, 17] (see Conclusions).

In the results presented below, an error-free transmis-
sion channel or storage media is assumed.

A woman’s head and shoulder image (‘*Lena’’) of size
512 x 512 pixels is presented as the first test image (for
more examples see below and [14]). Figure 6a shows the
original image. Figure 6b shows the image represented
using only four bit-planes with error-diffusion. This im-
age was coded (using the RMMS) at the rate of 2.0 bits
per pixel (b/p), and represents what we call the “‘four-bit
error-free image.”” Figure 6¢ shows an image that was
initially filtered with a 3 X 3 median filier followed by 4-
bit error-diffusion. This image was coded at 1.7 b/p. The
same picture, when represented via the morphological
skeleton proposed in [5] (instead of the RMMS) is coded
at the rate of 1.9 b/p. Figure 6d shows the reconstruction
of an image in which the least significant bit-plane (of the
4-bit error-diffusion representation) was coded without
skeleton points of radius zero; both the image and the
background were coded and ‘“holes’ were filled-in ran-
domly (the remaining three bit-planes were coded error-
free). This image required 1.5 b/p (as compared with the
rate of 2,0 b/p for the image in Fig. 6b).

The second test image is a satellite image. Figure 7a
shows the original image. Figure 7b shows the image rep-
resented using only four bit-planes with error-diffusion.
This image was coded (using the RMMS) at the rate of
0.92 b/p. Figure 7¢ shows an image that was initiatly
filtered with a 3 X 3 median filter followed by 4-bit error-
diffusion. This image was coded at 0.72 b/p.

From our simulation results we conciude that for sim-
ple binary images, like the most significant bit-plane
(MSB) of a gray-level image, the morphological step in
the coding scheme reduces the bit rate (see also [5]). For
example, in the case of the most significant bit-plane of
the satellite image, the bit-rate is reduced by 50% (from
0.018 b/p to 0.009 b/p). For the well known standard
picture ““House,”” this reduction is 16% (from 0.19 b/p to
0.16 b/p).

For more complicated images, such as the least signifi-
cant bit-planes (ILSB), the morphological representation



MORPHOLOGICAL GRAY-LEVEL IMAGE CODING 37

FIG. 6. Simulation results for **Lena’: (a) original image (8 bits); (b) *‘four-bit error-free image’’: 2.0 b/p; (¢} median-filtered four-bit image: 1.7
b/p; (d} four-bit image with the least significant bit-plane coded after opening by 8: 1.5 b/p.

in the coding scheme adds flexibility to the algorithm. In
this case, in order to reduce the bit-rate and to achieve
also coding advantages from the morphological step, geo-
metric errors should be introduced as explained in the
previous section. These errors reduce the total bit-rate by
about 20% for the satellite image (in comparison with the
bit-rate obtained without the morphological step).

Since each bit-plane is coded in an independent form,
the morphological step can be incorporated for the most
significant bit-planes only and can be omitted for the
others.

VII. SUMMARY AND CONCLUSIONS

In this paper, a new approach for gray-level image cod-
ing which uses simple binary morphological operations is
presented. This approach is based on bit-plane coding via
a new morphological representation derived from a Geo-
metric Sampling Theorem and a modified morphological
skeleton.

The Geometric Sampling Theorem (GST) deals with
the reconstruction of the boundary of a continuous two-
level image from a wnigue subset of points of its skeleton
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FIG. 7.
image: 0.72 b/p.

representation. This set of points, called essential points,
was found to play an important role in the skeleton repre-
sentation of discrete binary-image as well. Based on this
fact, an efficient algorithm for morphological skeleton re-
duction is proposed.

A modified morphological skeleton for binary image
representation is also described. This skeleton is com-
puted with an exponentially increasing in size structuring
element. In this way, the number of skeleton subsets is
reduced (which was the motivation for developing this
representation), resulting in an increased compression ra-
tio. While the computational advantage of this represen-

Simulation results for satellite image: (a) original image (8 bits); (b} “*four-bit error-free image'’: 0.92 b/p; (¢) median-filtered four-bit

tation jis pointed out in [8], here we demonstrate its
advantage in efficient representation for coding applica-
tions.

In the second part of the paper, details of the proposed
morphological image coder are presented. The main
steps are as follows: The image is first reduced from 8 bits
to 4 bits via an error-diffusion algorithm, and the pixels
are subsequently converted to Gray-code. The resulting
bit-planes are represented via the modified morphologi-
cal skeleton. Redundancy in the representation is then
reduced via an algorithm which is based on the GST. An
entropy coding scheme, particularly devised for efficient
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coding of these skeletons, is the last step. The possibility
of reduction of the bit rate by the introduction of geomet-
ric errors is also demonstrated.

The proposed coding scheme can be considered as a
step in the direction of geometric coding of gray-level
images. It is quite different from morphological coding
approaches which are based on image segmentation and
labeling (e.g., [19]). It is also found that the error intro-
duced by geometric deformations is, in general, more
acceptable to the observer than the blacking or quantiza-
tion errors introduced by standard image coding algo-
rithms.

This work points to several open problems; First, find-
ing a morphological skeleton which allows a structuring
element with changing shape (not just size, see [19, 20])
may further improve the compression ratio. Second, the
introduction of geometric errors directly in the gray-level
image (and not just through the bit planes) could be more
beneficial and should be investigated.

APPENDIX

The next theorem gives a lower bound on the length of
the skeleton arcs eliminated when opening a continuous
set with a continuous disk (see Section I11.B):

THeorEM 3. If Y, # Y., then L[W(Y,)] -~
LI¥(Y,:)) = r, where L(-) stands for arc length.

Proof. If we define op( p) as the Euclidean distance of
a point p in a set P = R? to the set boundary 4P, then
op() is a Lipshitz function [2, Chap. 11]; i.e., |op(p) —
aplq) = dp, ¢ ¥ p, g € P (d(-, -} is the Euclidean
distance in R?%). In the case where p, g are skeleton
points, i.e., p, ¢ € V(P), lop(p) — aplg)| < d(p, g} 12,
Chap. 11].

Let y be one of the skeleton points of ¥,, y € W(T,),
with correspondent skeleton radius p (such a point exists
from the hypothesis and Eq. (6), i.e., oy (y) = p). Travel
from y a distance r through the skeleton in a given direc-
tion (if this is not possible, the skeleton length is less than
2r, which is not an important case). Call this arc A (A C
¥(Y,). For any point z € A, we have

oy(2) —oyly)<dy, 2=,
then
oy(2) <oyly)+r=p+r,
and therefore z is eliminated by opening with the element

(p + r)B. Hence, the whole segment A, of length L(A) =
r, is eliminated. m

The number of climinated disjoint arcs A of length r

depends on the number of points y in ¥, having oy (y) =
p, and on the distance between them [14)].
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