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111. RESULTS AND CONCLUSIONS 
A  mathematical  model of the  steady-state  behavior of the 

ALE  has  been  presented  that  includes  the  effects of stationary 
time-varying random  fluctuations  in  the  ALE  weights.  This 
model of the ALE  displays  spectral  broadening of input line 
components,  as  one  would  expect.  The  model is  useful for 
predicting  line  spreading  when  the  coherence  time of ALE  in- 
put is much longer  than  the  length of the  filter,  as can occur if 
the  ALE  acts as's prefilter to a  spectrum  analyzer. 
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Generalization of the Window Method 
for FIR Digital Filter Design 

A. DEMBO A N D  D. MALAH 

Abstract-A generatiation of the conventional  window  method for 
the design of finite impulse  response (FIR) digital filters is presented 
by  including  nonequal  passband  and stopband ripple  specifications in 
the design  process.  Typically, this results  in a savings of up to 30 per- 
cent  in  filter  length  in  comparison to  the conventional  approach. 

I. INTRODUCTION 
The  window  method  for designing finite  impulse  response 

(FIR) digital  filters is  well known  and widely  used [ 1  pp. 
88-1041.  Its  main  advantage is its  simplicity since it is an 
analytical  technique.  The  disadvantages of the  technique 
are  that  the design  is not  optimal  in  the min-max  sense, and 
that  there is no independent  control  on  the design parameters. 
This  usually  results  in  the  need  for several  design iterations 
with  different  window  lengths  and  shapes  until  the design 
specifications  are  met. 
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The  approach  presented  in  this  work  provides  better  control 
on the design parameters for the  important class  of  multi- 
band  bandpass/bandstop  linear  phase  FIR  digital  filters.  It 
typically  results in savings of up to 30 percent  (theoretically 
50 percent)  in  filter  length,  and  provides  a  better  understand- 
ing of the  relationship  between  the  features of the  window 
function  and  the designed filter.  The  new  approach  still pre- 
serves the simplicity of the original  window  method. 

11. THE NEW DESIGN APPROACH 
Consider  the design  of  a  low-pass (LP)  filter. The  ideal LP 

filter  specifications  are given by 

where f is a normalized  frequency  variable (0.5 corresponds 
t o  half the  sampling  frequency). 

The  practical LP filter is  specified in  terms of the passband 
and  stopband frequencies Fp and 4, respectively, the  peak 
passband  ripple $, and  the  peak  stopband  ripple 6,, as  follows: 

1 - 6, < I H ( f )  I< 1 + 6 p  l f l < F p  
( 2 )  O <  ( H ( f )  1<6, F s G  Ifl<0.5 

where F, > Fp and [F,, Fs J is the  transition  band.  The  width 
of the transitron band is defined  as 

A F = F , -   F p .  (3) 

In  the  conventional  window  method [ 11, [21, F,  is  chosen 
to be  at  the  center of the  transition  band.  This  results  in  equal 
deviations  in the passband  and  stopband (ap  = 6,). Since usu- 
ally the  specification  is  for 6, # 6 the deslgn by  the  conven- 
tional  method is based on 6 d t  = mm ( 6 p ,  6,). 

The basic  idea of the new  approach is to properly  set F, (not 
necessarily at  the  center of the  transition  band) so that  the 
given  deviation  specifications  can  be  satisfied (i.e., 6, # 6,) 
with  a  shorter  filter  length  than  needed  with  the  conventional 
window  method.  This is the basic difference  between  the  new 
approach  and  the  conventional  method.  Once Fc is  set to its 
optimal value, the  remaining design procedure is exactly  the 
same  for  both  methods. 

The basic  idea  is illustrated  in Fig. 1.  The  dashed  line  shows 
the.response of a  filter designed  using the  conventional  window 
method. Fc $ at  the  center of the  transition  band [ F,,  F,] 
(denoted  by F,) and  the  filter  is  characterized  by  equal devi- 
ations  in  the  passband  and  stopband ( 6 d  = 6,). The solid 
line  shows  the  filter  response designed according to the  pro- 
p0se.d technique, i.e., using the  optimal value of F,, denoted 
by FcFCopt. Since Fc is  closer to Fp than  to F,, the  frequency - opt 
Fp at  which i H ( f ) l  = 1 - 6 d t  is less than F,. Th?,  effec- 
tively, the  transition  band is increased  by A F ’  = F, - F,. 

It  is  well knownA[ 11 ihat  an  estimate f y  the  needed  filter 
length is given by M r  ( D / A F )  + 1  where D is the  normalized 
window  width  (transition-band  width  times  the  window  span 
[ 2 ] )  and is  a parameter  which  depends  only  on  the  deviation 
6 d t  and  the  window  type.  Therefore,  with  the  new design, 
M z 6 / ( A F   + A F ’ )  + 1. If we now  define D’ e ( M -  l )AF’ ,  
we find 

M z ( 6  - D ’ ) / A F +  1. (4) 
To derive the  optimal vaiue  of F,, we first  define  the  follow- 

s.‘ 

ing  variables: 

AF, e F c  - ’7,; AF, = F, - Fc 

Dp k(M-  1 )  AF,; D, s ( M  - 1) AF,. ( 6 )  

A 
( 5 )  
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Fig. 1. Frequency  response of typical filters designed by the conven- 
tional (dashed line) and new (solid  line)  window  techniques. 

Fig. 1 also illustrates  the  important  fact  that  the  optimal value 
of F, is exactly  at  the  center of the  extended  transition 
band [F,, F,] (since lH(Fp)  I =  1 - 6&t), and  therefore, 
AF'  = AF, - AF,, 

It follows tha t  

OPL 

D, = 6 1 2 ;  D, = 6 1 2  - D ' ,  (7) 

and  hence (4) can be rewritten as 

M S ( D , + D p ) / A F +  1. ( 8) 

Finally,  from ( 5 )  and ( 6 ) ,  we can  calculate the  optimal value 
of F, in  terms  of Fp, F,, Dp, D, by 

Gopt = (D, Fp +op F,)l(Dp +D,). (9) 
Note  that if D p  = D, (i.e., 6, = 6,), the  result is FcOpt = F, = 
(Fp + F,)/2, as  expected, 

The  above analysis  was  based on  a  filter  for  which S, > 6, 
(which  is  the  more  common  situation).  However, (8) and (9) 
are  general  and  hold also for 6, > 6,. Thus,  there is no restric- 
tion  on using the new  design method  with  any  specification of 
6 ,  and 6 ,  for  which 6, f 6,. 

A 

Since 6 = 2  max (D,, D,), we  find  that 

and  hence,  in  the  limit,  a savings of up  to 50 percent  in  filter 
length can  be obtained by the new method in comparison to  
the  conventional  window  method. 

The  reason  for expressing F, in  terms of D, and D, is that, 
as  shown  in  the  sequel, D, and D, can be easily found, Since 
H(f) is symmetric  about F,, it was found  that D, is related 
only  to 6,, and D, is related  only  to 6,. Furthermore,  both 
Dp and D, are  related to '6, and 6,, respectively, by the  same 
function [ S I ,  [ 6 ] .  We found  that it is more  convenient to  
calculate the deviation 6 as function of the  related  normal- 
ized  (and scaled by  1/2)  window-width variable D rather  than 
the  other  way  around.  This  function,  which we denote  by 
6 = I ( D ) ,  is independent of the  filter  length M for  most prac- 
tical values of M (e.g., M 2  21) if the  window  sequence w(n) ,  
for  different values of M ,  is a  sampled version of the  same 
continuous-time  function wa(t).  That is, w ( n )  is obtained 
from i v a ( r )  by  uniformly  sampling  the  interval t E [ - 1, 1 1 at  a 
sampling  interval of 2/(M - 1).  The  shape of w J t )  defines the 
window  type.  Indeed,  most  popular  windows can be  considered 
as  a  sampled version of a  continuous-time  function so that  the 
function I ( D )  is obtained  by  uniformly  sampling  the  integrand 

N O R ~ R L I Z E D  Y I N D O Y  Y X D T H - D  

Fig. 2. The function 6 = I ( D )  for  (a)  Hamming, (b) Ham, and (c) 
Blackman  windows. 

of the integral  in the  definition of the  function I,@) below: 

using a  sampling  interval of 2/(M - 1). 
In  the derivation of (1 l), it is  assumed  that  the passband 

and  stopband  are  wide  enough  (in  comparison  to  the  transi- 
tion  band). If one of these  bands  is  narrow,  its  width  affects 
the value of D related  to  this  band,  and using the  function 
I ( D )  derived from  (1 l), which is independent of the filter 
frequency  response, it yields  a  filter  which  does  not  satisfy 
the given  specifications  for ( 6 p ,  6,). A method  for  checking 
if the bands  are wide enough  and  for  modifying  the specifica- 
tions if the  bands  are  not  sufficiently  wide is given in [ 6 ] .  
This  modification  allows using I ( D )  for  the design of narrow- 
band  filters,as well. From  this  point  on, we assume  that  the 
filter  has  sufficiently wide bands. Fig. 2  shows  the  function 
I ( D )  for  the  Hann,  Hamming,  and  Blackman  windows. 

For  the  widely used  Kaiser window  family,  an  associated 
family of design  curves  is needed, i.e., a  curve  for eaqh  value 
of  the  window  parameter a. In [ 2 ,  eq.  (7)],  an empirical  re- 
lation  is given for  computing  the  optimal value of the  window 
parameter  for  a given value of the critical  deviation a(6,it). 
A second  empirical  relation [ 2,  eq. ( S ) ]  evaluates the  normalized 
tJansition-band width  for  a given  value of the critical  deviation 
D (&,it). Extensions of these  two  relations  to  estimate D, 
and D, for 6 ,  # 6, are  as  follows [ 51 , [ 61 (for 6, > 6,): 

+[d6, i t  = 6,) - &(hait  = 6 p ) l  . S ( 6 p )  (1 3) 
where 

S(6,) = 0.105 - 0.00275(20 loglo 6, + 21).  (14) 

For 6, > 6 the p and s subscripts  in  (12)-(14)  are  simply  ex- 
changed. ?he optimal  window  parameter 01 is  selected  accord- 
ing to  [2,  eq.  (7)].  The design  is continued  by using (8) and 
(9) to  find  the  filter  length M and  to set FCopt. 

From Fig. 1 it is  seen that  the  response  at  the edge of the 
passband  drops,  as  desired, to  (1 - 6 ), but  the  maximum 
value of the  response is  less than  the a d w e d  value of (1 + 6,). 
This  asymmetry  in  the deviation  about  the value of 1 can  be 
utilized to  further  reduce  the  filter  length  by  properly modi- 
fying Ha(f). Details of the design  process  which  takes into 
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Fig.  3. Frequencx  response of Titers  designed  by the conventional 
(dashed  line, M = 146) and the new  (solid line M =  116) window 
techniques for the same  specifications (Sp = 0.057  and 6,= 0.001). 

account  this  asymmetry  are given in [ 61.  Typically,  an  addi- 
tional 5-10 percent  reduction  in  filter  length  is  obtained. 

To illustrate  the  new design approach,  consider  the design 
of a low-pass filter  with  the  following  specifications: F = 0.1, 
Fs = 0.125, 6, = 0.057 (1 dB passband  relative  rippK), 6, = 
0.001 (60 dB stopband  attenuation).  An  optimal  equiripple 
filter design [3 ] ,  [4 ]  results  in a filter  length of 85. Using 
the  conventional  window design method (F ,  = 0.1 125)  wjth 
a Kaiser window (a = 0.5653)  results  in a filter  length  of M = 
146. For the same  specifications  and the same Kaiser window, 
the  new design approach  results  in a filter  length  of M = 11 6. 
The  frequency  response  of  the  last two filters  are  compared 
in Fig. 3. It is  of  interest to  note  that  if the  asymmetry in 
deviation  about 1 (at  the passband)  is  utilized  161, the  filter 
length  is  further  reduced to 11 2. 

V. CONCLUSIONS 
A generalization  of the  conventional  window  method  was 

presented  for  the design  of FIR  digital  filters  with  nonequal 
passband and  stopband  ripple  specifications.  The  reduction 
in  filter  length  depends on the  mismatch  between  the passband 
and  stopband  specification,  and  can  result,  in  the  limit, in a 
savings of up   to  50 percent,  although  practical  specifications 
typically  result  in savings of  20-30  percent.  The  proposed 
technique preserves the simplicity  of the  conventional  window 
method,  and was  shown t o  have a simple  extension to multi- 
band  filter design, provided  the  bands  are  sufficiently sepa- 
rated.  Known  empirical design relations  for  the Kaiser  win- 
dow  family  [2]  were  extended  to  include  the  new  approach, 
avoiding the need  for  an  iterative design. The  extension of 
the  proposed generalization to the design  of multiband  band- 
pass/bandstop  filters  and  the  application  of  the  new  approach 
to the ,design  of  filter  banks  is given in [ 61.  Its  application to 
the design of  differentiators  and  Hilbert  transform  filters is in 
progress. 
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Relationship  Between Maximum Likelihood  Method  and 
Autoregressive  Modeling  in  Multidimensional  Power 

Spectrum  Estimation 

FARID U. DOWLA AKD JAE S .  LIM 

Abstract-Existence of  an exact  relationship  between the maximum 
likelihood  method (MLM) and  autoregressive (AR) signal  modeling 
in  multidimensional (mD) power  spectral  estimation  is  shown. For 
one-dimensional  (1-D),  uniformly  sampled  autocorrelation functions 
(ACF), Burg  has  shown a relationship  between the maximum entropy 
method (MEM) and MLM spectral  estimates. In this note we  show a 
similar  relationship  between the MLM and AR spectral  estimates  for 
m D  (or 1-D) signals  sampled  nonuniformly  or  uniformly. 

I.  INTRODUCTION 
In  this  paper  we  show  that  in m-D power  spectrum  estima- 

tion  there  is  an  exact  relationship  between  the MLM spectra 
and  the  spectra  obtained  by  AR signal  modeling. A special 
case of this  general  relationship  between the MLM and AR 
spectra is Burg’s [ 11 result on the  relationship  between MLM 
and MEM spectra.  For a I-D  uniformly  shaped ACF, the case 
considered by Burg, the MEM spectra  and  the AR spectra  are 
identical. 

Let x ( p )  denote a zero-mean  homogeneous  random field 
on a m-D  lattice I m ,  where I is the  set of  integers.  Imagine  the 
random field x ( p )  being sampled  by a set of (N + 1 ) sensors 
located  at  the  points p o ,  pl,  - * * , p ~ ,  where p i  € I m ,  for i = 
0, 1, . * , N. It  is  important to note  that  there  is  no  restric- 
tion  in  the  location of the sensors  in I m  and  that  the  choice of 
the  ordering of the sensors is  arbitrary. Making an  assumption 
that x ( p )  is  ergodic,  we  have  estimates of the m-D correlations 
given by 

r x b i  - pi) = E [ x ( p i )  x*(pi)l = < x ( p i )   pi) > (1) 

for 0 < i, j <A’ and where E denotes  the  expectation  opera- 
tion,  and < - > indicates a time averaging operation.  At  most 
( N 2  + N + 2 ) / 2  distinct  correlations  can be estimated  for  an 
array  with N + 1 sensors. Given the  knowledge  of  these  corre- 
lations,  the  problem is to  find  an  estimate of Px(o), the m-D 
power  spectrum of x ( p )  for -71 < w < 71. 

It will be  shown  that  the  spectral  estimates  obtained  by MLM 
and A R  signal modeling  are  related  by  the  following  identities: 

MLM ( o : ~ N )  = 
1 

N 1 
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