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The  Design of Optimal  Uniform  Filter  Banks  with 
Specified  Composite  Response 

Abstract-In this paper we prove that for suitable design specifica- 
tions and a wide class of optimization  criteria, the optimal complex 
filter bank with specifications on  its composite response is composed of 
frequency translated versions of a prototype filter. In particular, this 
holds for  the min-max and  WMMSE (weighted minimum  mean square 
error) criteria. As a result, a simplified design problem whose solution 
is an optimal prototype filter is formulated.  This prototype is essen- 
tially an optimal FIR low-pass filter subject to linear constraints  on  its 
impulse response. 

For the WMMSE criterion,  this characterization of the optimal fil- 
ter hank results in a simplified version of the design method presented 
in [l]. For the min-max criterion, this characterization implies that 
there exists an optimal window, by which the window design method 
results in the optimal low-pass prototype. The optimal window design 
problem is formulated as a linear programming problem, and an ap- 
proximate solution is derived using the Remez exchange algorithm. 

For real filter banks in which each filter is composed of a pair of 
complex filters, the optimal filter bank is no longer composed of fre- 
quency translated versions of prototype filter. However, for efficient 
implementation, the prototype translation property  may be part of the 
design specifications. For this  reason, the optimal WMMSE prototype 
for a class of real filter banks is derived as well. 

I 
I. INTRODUCTION 

N many applications, digital filter banks  with specified 
composite  response (usually flat, or  having  bandpass 

characteristics) are required. For  example, filter banks  are 
used in analyzing speech signals for  speech recognition 
applications [2]. The flat composite response guarantees 
that the sum of the outputs of all the filters in the  bank 
restores the original input signal so that no signal com- 
ponent  is misrepresented. 

The conventional filter banks in these applications are 
composed of filters that are  FIR (finite impulse response) 
digital filters with linear phase,  and either real or complex 
coefficients. Either  the  Remez  exchange  method  for the 
design of optimal min-max FIR filters [4], or the statis- 
tical approach  for  the  design of optimal Wiener  FIR filters 
[SI, can  be  used  to  design  each filter independently of the 
other filters in the filter bank.  However, direct application 
of these methods typically results in a poor  composite re- 
sponse [l], [6]. 
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The  design of a filter bank  with specified composite re- 
sponse  and  minimal  weighted  mean square error  was pre- 
sented in [l] . The  design of a filter bank,  with specified 
composite  response  and  minimal  weighted L ,  error, in- 
volves linear  programming techniques similar to the one 
presented in [7]. In  both  cases, the number of variables, 
which  is equal to  the overall number of filter coefficients 
in the filter bank,  can  be well over 1000. This rules out 
the feasibility of the optimal L ,  design  method  for many 
applications, and the optimal WMMSE  design in [l] may 
also  become quite complex. 

The window method for the  design of filter banks  with 
specified composite  response 181 is very popular  due  to its 
simplicity. However,  longer filters are needed  to  meet the 
frequency  response specifications, as  compared  to the 
min-max design [9], thus, this method  is not optimal. 

In the above discussion we  assumed that the different 
filters in the filter bank  are  independent  FIR filters. There- 
fore,  implementation of a filter bank consisting of N FIR 
filters, each of them of length M ,  demands NM multipli- 
cations per input sample. However, if these FIR filters are 
frequency translated versions of a prototype filter, then an 
efficient implementation using the  FFT algorithm requires 
only on  the  order of N log N + A4 multiplications per 
input sample [3]. This  is,  the  main  reason that many  of the 
digital filter banks  used in practice are composed of fre- 
quency translated versions of a prototype filter, and they 
will be  denoted in the sequel as prototype translated filter 
banks  (PTFB). 

In the next section we define the class of complex uni- 
form design problems  (CUDP)  for  which  we  prove that 
the optimal filter bank with specific composite  response  is 
a PTFB. As a result,  an equivalent, simpler design prob- 
lem  whose solution is the optimal prototype filter is for- 
mulated. The optimal prototype filter is the optimal  FIR 
low-pass filter (LPF) subject to linear constraints on its 
impulse response. 

Section I11 presents the simpZiJed version of the optimal 
WMMSE design  method of [l] for  the  CUDP  (i.e. , the 
design of the  optimal prototype LPF), and the issue of 
computational  complexity is elaborated,  whereas Section 
IV presents the  design of the optimal min-max prototype 
for the CUDP.  These  two  design algorithms complement 
each  other, since each one is oriented toward different ap- 
plications (for  example,  compare [4] and [SI). The opti- 
mal  min-max prototype design is by means of linear pro- 
gramming techniques. In the case of a flat composite 
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response specification, it is shown that the linear pro- 
gramming design method, presented in [lo] for different 
applications, is also suitable  for  the design of this proto- 
type filter. 

However, the high complexity of the  linear program- 
ming techniques limits the feasibility of this method to the 
design of filters with less than 100 coefficients [7]. There- 
fore, in Section V, it is shown that the design of the op- 
timal min-max prototype for  the CUDP when a flat com- 
posite response is specified can be done by the window 
method. This in itself does not lead to a significant reduc- 
tion in the design complexity,  since  the optimal window 
has to be designed using linear programming techniques. 
However, based on  the  performance analysis of the win- 
dow method for FIR design  in [l 11, we present a much 
simpler method for designing a window which approxi- 
mates the desired optimal window. 

This approximation uses the Remez exchange algo- 
rithm, and  the design problem is restated so that  the so- 
lution is obtained via an available design program 1141. 
The approximate optimal window (AOW) design leads to 
superior (in the min-max sense) prototype filters than 
those obtained by other suboptimal methods [SI, [ 121 as 
is demonstrated via a design example.  For filters of short 
length,  the AOW design is compared to the optimal so- 
lution, and results in a small degradation in performance. 
However,  the complexity of the AOW design method is 
relatively very low compared to the optimal min-max de- 
sign. Thus,  the AOW is applicable to the design of pro- 
totype filters of length of even several hundred taps. 

In many applications real outputs  are  desired, and it 
cannot be obtained by a  PTFB.  Thus, usually proper pairs 
of filters in the  PTFB  are  added  together yielding real out- 
puts, with an efficient implementation.  However, unlike 
the case of CUDP, in general, this type of filter banks is 
not optimal, and thus it degrades the performance as com- 
pared to the optimal realjilter bank having the  same spec- 
ifications. Nevertheless, in order to take advantage of the 
efficient implementation, this realization is frequently im- 
posed as part of the design specifications. Therefore, we 
derive  in Section VI the optimal WMMSE prototype for 
this case. 

Conclusions are drawn in the  last  section. 

11. THE OPTIMALITY OF PROTOTYPE TRANSLATED 
FILTER BANKS FOR COMPLEX UNIFORM DESIGN 

PROBLEMS 
We begin with introducing the complex uniform design 

problems (CUDP)  in  a general framework, which enables 
a unified treatment for both the  WMMSE and the min- 
max criteria.  We then prove that for any CUDP, at least 
one optimal solution is  a  PTFB, and as a consequence 
formulate an  equivalent,  simpler design problem. 

A. Complex  Uniform Design Problems 
A) The filter bank is composed of N individual digital 

filters. The ith filter is  an FIR filter with M complex coef- 
ficients (denoted by { aik ] i= - L ,  where L = ( M  - 1 ) /2), a 

and its frequency response is 
L 

H~ ( f )  2 ajke- j2rkf .  (1) 

Remark: For  ease of presentation we use a noncasual ver- 
sion of the filter bank, casuality can be obtained by a 
proper delay. 

B) The desired frequency response of the ith filter is 
denoted by Di ( f ) ,  i = 1, * , N .  The frequency 
weighted error between this desired frequency response 
and the frequency response of the corresponding filter is 

k =  -L  

Ei ( f )  2 W,  ( f )  (Di ( f )  - Hi ( f ) )  (2) 
where Wi ( f ) 2 0 is  a weight function which is nonzero 
on a set of positive measure. Thus, the ith filter response 
error is defined as  a suitable norm (denoted by 11 1 1  ) of the 
periodic function Ei ( f ), i.e., 

a i  L2 1 1  Ei ( f )  1 1 .  ( 3 )  
For  example, in the WMMSE design the L ,  norm is used, 
whereas in  the min-max design the L, norm is used. 

C)  The composite response of the filter bank [denoted 
by H, ( f ) ]  is the  sum of the responses of all N filters, 
i.e. , H, ( f ) L Cy= Hi ( f ). The composite response er- 
ror is defined as 

6, )I E,(f 111 ( 4 4  

&(f)  L2 Wc(f ) (Dc( f>  - Wf))  (4b) 

where 

with D,( f ) being the desired composite response, and 
W,( f ) 2 0 the composite response weight function 
which is nonzero on  a set of positive measure. For ex- 
ample,  a flat composite response is specified by D,( f ) 
= 1. 

D) The overall performance of the filter bank is mea- 
sured by a seminorm (denoted by I) ) )  ), which takes into 
account the response errors of all the filters. Let 6 E Wy 
be the vector, whose ith component is &-the error of the 
ith filter, then the overall error is defined as 

A 
E = I1611T ( 5 )  

where 1 1  / I T  is defined on RT, the  space of N-dimensional 
real vectors with nonnegative components, and an in- 
crease in the errors of some of the individual filters never 
decreases the overall error, i.e., for every 8, A6 E Ry, 
1) 6 -I- A8 ) I T  2 11 6 ] I T .  

E) The  design of an optimal filter bank with a specified 
composite response is  the solution of the following con- 
strained optimization problem: 

v i n  { e )  (6)  

where q is the allowed tolerance of the composite re- 
sponse error.  The  existence of a solution (not necessarily 

{ a i k J ~ = ~ , k = - L l ~ c ~ ~  
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a unique one) to this design  problem  for  large  enough 1 
was  shown  elsewhere [ 161, 

DeJnition: A  complex  uniform  design  problem 
(CUDP)  is characterized by 

; i = l , . . * , N  (7a) 

11 8("/ = 11 8 11 T ;  for any 6 E RI: ( 7 4  

for any functionA(f) and i = 1, * * - , N (7f) 

b) The coefficients of the  PTFB filters are obtained 
from the optimal prototype filter [the solution of (8)] by 

A -jWilN+A)k i = 1 ,  . . . , N; 
k =  - L ; * *  , L .  (9) 

aik = aoke 

The proof is  given  to the Appendix. 
Remarks: 
1) Since A in the PTFB  and  CUDP definitions is arbi- 

trary, its value can  always  be  chosen so that the prototype 
filter is a low-pass filter. 

2) For  even length CUDP a similar equivalent problem 
can  be derived, where  only (8b) is properly modified. We 
omit  the details here for simplicity of the presentation. 

3) Since ) I  \ I T  does not aflect the equivalent problem, 
we can ignore it in the sequel! 

4) ForDo(f  ), W o ( f ) ,  D , ( f -  A ) ,  and W , ( f -  A )  
which  are real even functions, and I( A (  ) 11 = I (  A* ( * ) 11 
= 11 A* ( - * ) 11,  for  every periodic function A ( ), it can 
be  shown (cf. [16]) that the optimal prototype filter has 
zero phase  and real coefficients, i.e., aok = aok = ao(-k) .  * 
Therefore, the  delayed-by-L-samples casual version of the 
optimal PTFB will be  composed of FIR filters with  com- 
mon linear phase.  The  proof is beyond the scope  of this 
paper. 

where a('), 1 = 1, * , N ,  denotes the vector obtained 
by a cyclic shift of the  components of the vector 8, i.e., 
62') = 6( i+l )modN.  The interpretation of (7a)-(7f)  is that 
the individual filters specifications are translated versions 
of a prototype specification, the composite  response spec- 111. T~~ oPTIMAL WMMSE soLUTIoN FOR CUDP 
ifications are invariant under  frequency translation, and 
each  one of the filters has the  same contribution to the 
error  measure E .  

The  WMMSE  design  of general filter banks  with spec- 
ified composite  response has been presented in [ 11. Here 
we concentrate on the WMMSE CUDP, and  as a conse- 

B. The Equivalent  Design  Problem 
Dejinition: A prototype translated filter bank  (PTFB) is 

a filter bank  with the property: Hi ( f ) = Ho ( f + i / N + 
A) ,  i = 1 ,  * - - , N ,  for  some value of A and  some fre- 
quency  response of an  FIR filter of length M ,  which  is 
denoted by H, ( f ). 

Theorem I: Any CUDP has as least one optimal solu- 
tion which is a PTFB. 

The proof is  given in the  Appendix. 
Theorem 2: For  CUDP of odd length ( L  is an integer 

a)  Solve the following prototype FIR filter design prob- 
value), the optimal  PTFB is obtained as follows. 

lem: 

quence of theorem 2, obtain a simplified algorithm for the 
design of thc optimal (in the WMMSE sense) solution, 
which has the structure of a PTFB. 

The  WMMSE  CUDP  is a filter bank  design  problem, 
for  which (7a)-(7d) holds,  and the L2 norm is used,  i.e., 

for any  periodic  function A ( f ) . ( 10) 

It is clear that this norm satisfies (7f).  Therefore, ap- 
plying theorem 2, the equivalent design  problem for odd 
length WMMSE  C,UDP  is 

L 2 
subject to  the following constraint imposed by the com- 
posite response specification: 

- aok e-j2@ 1 df (114 
k =  -L  

subject to 
6, Li /I W C ( f  - A ) , ( D , ( f -  A)  0.5 

6: j 1 Jwf- A)I ' (D , ( f  - 6) 

m =  [ - L / N 1  /z 
LLIN J -0.5 

- N m = r - L / N ~  %(&)e - j 2 z M )  11 5 q .  (8b) LLIN J 
- N ao(mN)e -j2zfmN df 5 q 2 .  ( l l b )  

This is the equivalent  design problem with  which  we shall 
deal in the succeeding sections. This  convex  programming  problem  is equivalent to [ 13, 
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sec. 4.51: error (6:) of the optimal PTFB  are 

For some value of K ( 7 ). Differentiating (12) with respect 
to the unknown variables and rearranging the resulting 
equations leads to the  solution: 

a, = R , ' [ d ,  + H T q ]  ( 1 3 4  

where a, E GM is the vector whose elements are the coef- 
ficients of the prototype filter. The elements of the posi- 
tive definite Hermitian M X M matrix R, are 

0.5 

Ro(m, k )  = 1 -0.5 1 W o ( f ) l  '@Jh . f  ( m - k ) d f .  ? 

d , ( m )  = j -0.5 1 w , ( f ) / 2 w ) e ' 2 " f " ' d f i  

m, k = -L ,  - * * , L,  (13b) 

and the elements of d, E CM are 
0.5 

m ,  k = -L, * , L. ( 1 3 4  

The elements of the Q X M matrix H (with Q = 
2 L L / N  J + 1)  are 

H ( m ,  k )  = 
1 k = m N  

0 elsewhere; 

r n = - L Q ; - .  , L Q ,  k =  - L ; * *  , L  

( 1 3 4  
where 

The vector q E lGQ is a correction vector due to the  com- 
posite response specification and is defined as 

1 
q = [g R,' + NHR,'HT  (RF'd, - NHRF'd,) .  I-' 

R c h  k )  = s Wc(f - 4 1 

dc(m)  = i::.5 1 W c ( f -  A ) 1 2 D c ( f -   A ) e J 2 * f i N d f ;  

( 1 3 4  
where the elements of the positive definite Hermitian Q 
X Q matrix R, are 

0.5 
2eJ2rf(m-k)d f; 

-0.5 

m, k = -L , LQ, (13f) 

and the elements of d, E (EQ are 

m = -LQ, . > LQ. (13g) 

Equations (13a)-(13g) describe  the optimal prototype 
given K (  7 ), and are  the simplified version of (lo)-( 15) 
in [ 13. The overall error (E ) and the composite response 

where u* denotes conjugate transposition of u. The value 
of K (  7 ) is obtained,  similar to [ 1 , equations (16)-(24)], 
by simultaneously diagonalization of R,' and T 

= N H R ; ' H ~ .  a 

Usually I W o ( f ) l 2 ,  I W c ( f -  A )  1 2 ,  D,(f>, andDc(f 
- A )  are piecewise constant functions,  and  all  the inte- 
grals appearing in (13) and (14) can be evaluated analyt- 
ically. Thus, the complexity of the design is 0 ( M 2  + 
a (M/N)3).  0 ( M 2 )  operations are needed for  the inver- 
sion of the M-dimensional Toeplitz matrix R,, and for ob- 
taining the solution a, via (13a). O(  CY ( M / N ) 3 )  opera- 
tions are needed for the simultaneous diagonalization of 
the Q X Q symmetric matrices R;' and NHR,' HT, where 
Q = M / N ,  and CY > 1 represents the relative complexity 
of unitary diagonalization of a matrix compared to its in- 
version. In comparison,  the original algorithm of [l]  in- 
volves inversion of N Toeplitz matrices, then a simulta- 
neous diagonalization of two M X M matrices, and thus 
its complexity is O ( N M 2  + 0 " ) .  For  example,  the  de- 
sign of a typical digital filter bank with 32 filters, each of 
them an FIR filter of length 256, takes a few CPU seconds 
on a 16 bit computer using the new algorithm, whereas a 
direct design requires the solution of an optimization 
problem with 8192 variables! 

IV.  THE OPTIMAL MIN-MAX SOLUTION FOR CUDP 

Optimal min-max design of filter banks with specified 
composite response involves linear programming tech- 
niques. The  linear program for each filter is of M un- 
known variables and P linear  constraints, where the con- 
tinuous frequency response error of this filter is uniformly 
sampled with a sampling interval of 1 /P [7], [14]. For 
the whole filter bank design, the overall linear program- 
ming effort involves MN + 1 unknown variables and P ( N  
+ 1 ) linear constraints including the composite response 
specifications. Each iteration of the  linear programming 
algorithm involves ( N  + 1 ) FFT's of dimension M each, 
followed by interpolations by a  factor of P / M  [7]. This 
step which has a complexity of 0 ( ( N  + 1 ) M log2 M + 
( N  + 1) aP ) operations per iteration determines the 
complexity of the algorithm, where a is the number of 
operations per output sample of the interpolation filter. 
For typical values of N = 32, M = 256, and P = 1024 
this algorithm is quite complex. 
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The min-max CUDP  is a filter bank design  problem, 
for which (7a)-(7d) hold, and the L, norm is used. Since 
this norm satisfies (7f), it follows from theorem 2  that  for 
odd length min-max CUDP,  the solution is a  PTFB whose 
prototype filter is obtained by 

81 I 

subject to 

This equivalent design  problem involves only M variables 
and 2P constraints, thus,  the complexity of the design is 
reduced by at least a  factor of N .  The optimal prototype 
filter has real coefficients and  linear phase provided that 
the conditions presented in Section I1 are  fulfilled, and 
then additional reduction in  the  design complexity is pos- 
sible. 

There exists a solution of (15a)-(15b), which is ob- 
tained with equality in (15b) provided that q 2 q,, and 
the minimal composite response error q m  is the solution 
of 

q m  = [ SUP I w c ( f -  A >  1 j ~ c ( f -  A)  
{ b m ) m = - L Q  ~ E [ - o . s , o . ~ I  

LO 

with L, 2 L L I N  ] . The proof which is beyond the scope 
of this paper can be found in [16]. 

The design of the  optimal min-max prototype for q = 
q, (i.e., minimal composite response error) can thus be 
done  in  the following two steps: 

a) solve (1 6) to obtain q m  and { b, 1 kQ= -LQ, 

b) substitute a,(d) = b,, and solve (15a) to complete 
the impulse response of the prototype filter. 

Each one of these steps involves a  linear programming 
solution of a constrained FIR digital filter design prob- 
lem,  similar to the  one presented in [ 101. For  the partic- 
ular  case of a flat composite response (Le., Dc( f ) = l ) ,  
the unique solution of (16) is b, = 1 / N  6 ( m ) ,  with q m  
= 0. Thus,  the optimal prototype for a.spec$edflat com- 
posite response with zero  tolerance  is essentially a Ny- 
quist filter that  is designed as suggested in [ 101. The  linear 

ever,  for values of M ,  which are several hundreds,  this 
approach becomes impractical. 

Note: For flat composite  response,  the unique solution 
of (16) is independent of A .  Thus, A, which is the  center 
frequency of the Nth filter, does not affect the  -optimal 
prototype design,  nor  the performance of the resulted 
PTFB.  Therefore,  in the next section (which is devoted 
to the design for flat composite response specification), 
and the examples therein, we ignore  this  parameter. 

V. APPROXIMATE OPTIMAL WINDOW DESIGN 
A. Derivation of the  Approximate Optimal Window 

The following theorem (which is proven in the Appen- 
dix) relates the solution for an important subclass of these 
min-max CUDP with the well-known window method for 
the design of FIR filter banks (cf. [SI). 

Theorem 3: The solution of any odd length min-max 
CUDP with Do( f ) which is an ideal LPF of bandwidth 
1 72N,  a flat composite response specification (D,( f ) = 
1 ), and zero tolerance ( q = q, = O ) ,  can be obtained 
with the window method by a  proper  choice of the win- 
dow sequence. Furthermore,  for any window sequence 
with w, = 1, this composite response specification is ful- 
filled. 

We  shall concentrate on this subclass of CUDP and ef- 
ficiently design  a good approximation of the optimal so- 
lution using this theorem.  Since any window sequence 
with w, = 1 results in a flat composite response,  the  op- 
timal window [for which { aok ] ;= -L  is a solution of (15a)l 
is any solution of  

Min SUP [ I W J f )  I l D , ( f )  
~ w d ~ = - L f € [ - o . s , o . 5 ]  
w*= 1 

where { do ( k )  ) ;= -L are  the coefficients of the desired (in- 
finite) impulse response, i.e., 

0.5 

d , ( k )  Do( f )  ejZnfkdf 
-0.5 

r 

k = 0. 

For I W,( f ) I = I W,( -f  ) 1 ,  there is always  an  opti- 
mal window with zero-phase and real coefficients (cf. 
[ 161). Restricting the solution of the design problem to 
have  these  properties,  the optimal window is the solution 
O f  

programming approach is  quite satisfactory for short 
length prototype designs (typically,  for M I 100). How- 

- 
L 

k = l  2 wk r k  sin ($) cos (2~fl)l). (19) 
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This problem can be solved by linear programming as 
in [lo]. It seemed at first that this is a Chebyshev approx- 
imation problem, and thus, the Remez exchange method 
can be applied. This is not true,  since  the Chebyshev ap- 
proximation problem with unknown coefficients aok = A 

wkd,(k) results in general with a,(d) # 0, contradicting 
the constraints d,  (mN ) = 0. For this reason, the method 
presented in [12] is suboptimal. Similar to [11], we rep- 
resent the error induced in  the window method as follows: 

where 

IJ+ - A) 

L 

= (0.5 - f )  - - wk sin (2nJk). ( 2% ) 
k = l  a k  

In [15], the following approximation of 6, (denoted by 
8,) 'is used: 

It is easily verified that 6, I 28, for any window se- 
quence. Furthermore,  in [ l l ]  and [15], this approxima- 
tion was used for most of the known window sequences 
and for many design examples,  always leading 6 ,  2 8,. 
Let  the approximate optimal window (AOW) denote the 
sequence with minimal value of 8,. We therefore expect 
the  error of the  PTFB designed using the AOW sequence 
to be within a  factor of two from the minimal error. Com- 
bining (20b) and (21) and rearranging the resulting 
expression, the AOW is  the solution of 

Mi? [ Sup [ I  @(6)  I (0.5 - 6 
C w k I k = l  196[0,0.5] 

L 
- wk sin (2n6k) 

k = l  nk 
where 

In (22b) we interpret 1 W, ( A )  1 as  zero €or A < 0 or A > 
0.5. Unlike the original problem stated in (19), this is a 
Chebyshev  approximation problem, thus,  the Remez ex- 
change method can be applied,  and  the AOW is easily 
obtained even for filter lengths of several hundreds. Solv- 
ing (22) with the Remez exchange method appears to re- 
quire  a special program. However,  the  available program 
in [4] is suitable for this purpose by applying the follow- 
ing algorithm. 

a) Design an optimal (in the min-max sense) diferen- 
tiator of length M for  the weight function 1 @( 0.5 - 6 )  I 
using [4] with an absolute error  criterion. 

b) Let ( - a L ,  * - - , a, ,  0, --al, * , - a L }  be the coef- 
ficients of this optimal differentiator, then the desired 
window sequence is given by wk = 2nk( - 1 ) k+ *ak, k = 
1 ,  * * *  9 L. 

Remarks: 
1) The AOW design method was derived for odd length 

min-max CUDP.  For  the even length case,  a  similar der- 
ivation leads to the definition of the AOW [which is the 
argmin of 8, defined in (21)] as the solution of 

A 

M$,~ { SUP [ I  @W 110.5 
{ W k ) k = l  19e[0,0.51 

M / 2  

k = l  ~ ( 2 k  - 1 )  
- c  2wk sin a6(2k - 1)1]], (23) 

with I @( 6 )  I defined by (22b).  The expression above re- 
sults from the analog of (20b) for even length sequences. 
The available program in [4] can be used to solve (23) 
using the following algorithm. 

a) Design an optimal (in the min-max sense) Hilbert 
transformer of length M for  the weight function 1 @( 6) 1 
using the program in [4]. 

b) Let (aMj2 ,  , al ,  -al ,  - * , -aM/2) be the 
coefficients of this filter, then the desired window se- 
quence is given by wk = n ( k  - i ) -ak, k = 1 ,  a - e , M / 2 .  

2) For  a general (nonuniform) filter bank design prob- 
lem with specified flat composite response, the AOW can 
be defined in a  similar  manner, where the weight function 
I @( 6) I given in (22b) is properly changed. The AOW 
results in  an approximation to the optimal filter bank 
among those designed by the window method. Therefore, 
it usually leads to a superior performance as compared to 
conventional window sequences. However,  for nonuni- 
form filter banks, the AOW design is not necessarily an 
approximation to the optimal (in the min-max sense)Jilter 
bank. For this reason we concentrated on  CUDP,  al- 
though the AOW  may be useful in the more general case 
as well. 

A 

B. Design Examples 

We compare the design using the AOW sequence to the 
optimal min-max prototype via the design example 1 in 
[lo]. This example corresponds to CUDP with 8 FIR fil- 
ters, each one of them has 39  taps.  The passband of the 
prototype isf E [0, 0.106251, whereas its stopband is f E 
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TABLE I 
TYPICAL DESIGN  EXAMPLE 

KW P I  AOW TMX [12]  DMX  [4] 

Ap As A p  A s  Ap As Ap As Ac 

W =  1 0.22 38.10 0.25 38.45 0.14 41.57 0.14 41.68 0.03 
W = 10 0.22 38.10 1.10 46.68 1.03 30.25 0.54 50.08 4.61 
W =  50 0.22 38.10 3.09 51.22 - - 1.08 58.18 8.73 

A,-Passband  ripple in decibels. 
A,-Stopband  attenuation  in decibels. 
A,-Composite  response  ripple  in decibels. 

[O.  14375,  0.51. The desired passband deviation equals the 
desired stopband deviation [ i.e., W, ( f ) is  as in Fig. 9(b) 
with w = 1 1 .  The optimal min-max prototype has  a pass- 
band ripple of 0.35 dB,  and  stopband attenuation of 33 
dB.  The AOW design results in a  passband ripple of 0.43 
dB and  stopband attenuation of 32 dB.  Thus,  the degra- 
dation due  to  the suboptimally of the AOW design is very 
s,mall. Similar results have  been obtained for other design 
examples.  For  longer filters (typically above 100 taps), 
the optimal min-max design  is  too  complex. Thus, we 
compare the design using the AOW sequence to various 
suboptimal  methods,  namely, the conventional window 
method in [8] using the  Kaiser window (denoted by KW), 
the suboptimal min-max design of [12] (denoted by 
TMX),  and  the unspecified composite, response  design in 
[4] (denoted by DMX).  The  comparison  is via a typical 
CUDP.  Since  TMX  is applicable only to  odd length fil- 
ters,  we consider a  bank of N = 16 filters, having  each 
an  impulse  response of length M = 123 samples. A flat 
composite  response is specified, i.e., D, ( f ) = 1, and the 
desired prototype frequency  response  is that of  an ideal 
LPF of bandwidth & (i.e., Do( f) = 1 for I f I 5 & and 
zero elsewhere). All, four design methods  are applied to 
design a  PTFB.  For these specifications KW,  AOW,  and 
TMX guarantee a flat composite  response ( 6 ,  = 0). The 
prototype weight function is 

1 1 If1 I F p  

p,(f)l 0 F p  < ( f l  < F, F p  < & < F s  (24) 
W F, 5 I f  I I 0.5. 

The transition bandwidth is F, - Fp A q. For  KW, 
DMX,  and  TMX ( F ,  + Fp ) / 2 = & , whereas for the 
AOW ( F ,  + F,) / 2  is optimally set according to [ 113. 
Table I summarizes the performance obtained for three 
typical values of W = 1 ,  10, 50. As expected, the DMX 
design has the smallest passband  ripple,  and largest stop- 
band attenuation. However, it results in a  poor  composite 
response, with  a ripple of up  to 8.73 dB for W = ,50. For 
W = 1 all four methods results in a  similar  performance, 
whereas  for W >> 1 the AOW is certainly preferred on 
TMX  and KW. Since TMX is applicable only for ( N  - 
1 ) I W I 1 [12], it is not used for W = 50. Figs. 1-4 
illustrate the  shape of the response of the prototype filter 
which results in the DMX,  TMX,  KW,  and AOW de- 
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Fig. 1 .  Frequency  response of the  low-pass  prototype  filter, and  the  re- 
sulting  composite  frequency  response  when  using  the  DMX  method. 

0.5 

NORMRLIZED  FREPUENCY 

Fig. 2. Frequency  response of the  low-pass  prototype  filter  using  the TMX 
method. 

signs, respectively, for W = 10. In  Fig. 1 ,  the  composite 
response of the DMX filter bank  is  also illustrated. 

It is obvious in Fig. 2 that the low stopband attenuation 
of the TMX results due to the spurious peaks in the fre- 
quency bands  around & + m/16. m = 1,  - * e ., 14. If 
these bands are excluded  from  the  stopband by proper 
change of I W, ( f ) 1 ,  similar performance  to  the AOW is 
achieved. Figs. 3 and 4 illustrate the  shape of the filters 
designed using KW and  AOW, respectively. Note  that  the 
AOW results in a nearly equiripple response. 

VI. REAL WMMSE  UNIFORM  FILTER  BANKS 
In many applications, real outputs are desired while 

preserving the efficient implementation of the  PTFB.  This 
is done by adding together the proper pair of outputs of 
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HORHRLIZED FREQUENCY 

Fig. 3.  Frequency response of the low-pass prototype filter using the KW 
method. 

0 

NOMRLIZED FREPUENCY 

Fig. 4. Frequency response of the low-pass prototype filter using the AOW 
method. 

the  PTFB.  The following result is an immediate conse- 
quence of (9). 

Lemma I :  Adding pairs of outputs of a  PTFB with a 
real prototype filter having a  zero-phase response results 
in  a real filter bank if and only if A Omod ( 1 / 2N ). 

Two different structures of real filter banks can thus be 
obtained from the same real prototype filter. The first one 
[denoted as structure ( A ) ]  corresponds to A = 0 with the 
ith and ( N  - i )th outputs being added, yielding rlv + 
1 / 2  1 real filters; whereas in the second structure [de- 
noted  by ( B ) ] ,  A = l /2N and the ith and (N  - l - i)th 
outputs are  added, yielding rlv / 2 1  real filters. The 
main difference between these two structures is in the 
bandwidth of the first (low-pass) filter in  the resulting real 
filter bank. 

IWi ( f ) I2  

I 

(b) 
Fig. 5. (a) The  weight function of the ith filter in an RUDP. (b) The weight 

function of the CUDP corresponding  to  Fig.  5(a). 

Both structures are not suitable for  a CUDP but rather 
for  a real uniform design problem (RUDP) in which (7b), 
(7d),  (7e), and (7f) hold, whereas (7a) is replaced by 

Q ( f )  = ci [ Do ( f'+ - ) + D o  ( f -  - )I7 ( 2 5 4  
2N 2N 

and (7c) is replaced by 

'1  l f - - i  2N i s F p  

i 1 
or I f +  2N 1 5 Fp; F~ s 

Iw,(f)l = {  0 I f - ,  1 E ( F p 3 s I  

2 i 

1 
or l f + & l  E(F,,F,]; F, I - N 

w elsewhere2, (25b 

where i = 0, 2, 4, - - * , for structure ( A ) ,  i = 1, 3 ,  5 

'For F, > 1 / 2 N  this definition becomes  inaccurate for i = 1 [the first 
filter in structure ( B ) ] .  To  accommodate for this particular  case in the de- 
sign process, (25)-(29) have to be slightly modified. However, this mod- 
ification complicates  the  presentation and therefore is omitted here. 
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- * * , for structure ( B ) ,  and Ci = 1 except for Co = CN 
g 0.5. 

Fig. 5(a) illustrates a typical weight function 1 W, ( f ) 1’ 
and Fig. 5(b) illustrates the equivalent low-pass weight 
function I W,( f ) l 2  used in  the corresponding CUDP. 

The real filter banks obtained from a  PTFB have the 
following property: 

n 

where the values of i in (26) are determined by the struc- 
ture used in combining pairs of outputs of the  PTFB. In 
general,  the optimal solution of the  RUDP does not pos- 
sess the property implied by (26). Thus, unlike the  CUDP 
case, in general, any PTFB provides only a suboptimal 
solution of the  RUDP.  However,  one can impose (26) as 
part of the  design specifications to guarantee an efficient 
implementation via a  PTFB. In this  context,  the question 
of finding the optimal prototypefilter arises naturally. We 
concentrate,  therefore,  on  the optimal (in the WMMSE 
sense) solution of the  RUDP subject to  the constraint im- 
posed by (26), with the Euclidean norm used as 1) )I p 

For this case,  the composite response specification im- 
posed on  the prototype filter is given by (1 lb) as in the 
WMMSE CUDP  (with A = 0),  whereas the  overall  error 
[which is obtained by substituting (26),  (25), and (10) in 
(2),  (3), and (5)]  is,  for structure ( A ) ,  

and for structure ( B ) ,  

where e & is  the  overall  error of the WMMSE CUDP given 
in (1 la), and $N is the following correction term: 

- Ho( f + ;))I df 1 
where the  “superbar”  denotes complex conjugation. Due 
to  the  existence of a nonzero correction term $ N ,  E :  and 
e: differ from the  overall  error of the WMMSE CUDP. 
Thus,  the optimal prototype for  the constrained WMMSE 
RUDP is diflerent from the optimal prototype for  the 
WMMSE CUDP.  Furthermore,  for  an  even number of fil- 

’W, ( f ) is periodic  with  a  period of l ,  and in that  context we interpret 
the word “elsewhere.” 

ters,  the optimal prototype for  structure ( A )  is not the 
optimal prototype for  structure ( B ) .  For optimization pur- 
poses, the  correction  term GN is rewritten as  the  following 
quadratic form: 

$N = ~ u Z ( R :  + RN)u, - dga, - U:dN + $o (28) 

where $, is a constant (independent of uo) ,  and  the  ele- 
ments of the M X M matrix RN are 

1 
N 

RN(m, k )  = -- (3R0(m, k )  - 2W) + (R,(m,  k )  

- w )  S(m = k mod N )  + (2R0(m, k )  

- W )  6 ( k  = 0 mod N )  ( 29a 1 
and the elements of dN E cM (assuming  that Do ( f ) = 0 
for,\ f 1 > 1 / 2 N )  are 

1 
N 

d N ( m )  = -- d, (m)  + do(m)   S (m = 0 mod N ) ;  

m = O , . . * , M - l .  ( 29b ) 

Therefore, the design of the optimal prototype for the 
constrained WMMSE  RUDP is via (13a)-(13g) with R, 
and do being replaced by the following expressions, re- 
spectively: 

(b) Ro + 4 (RN/2 + Rg/2) ; 

do + d N / 2  for N even and structure ( A )  

The issue of design complexity is similar to the CUDP 
case, and was already discussed in Section 111. 

VII.  CONCLUSIONS 

Three new algorithms for solving a  class of filter bank 
design problems denoted as complex uniform design 
problems (CUDP)  are  presented. They are based on the 
existence of an optimal solution which is  a prototype 
translated filter bank (PTFB).  This important existence 
theorem (Theorem 1) results in an equivalent design prob- 
lem with reduced complexity. 

The first algorithm is a simplified version of the general 
WMMSE design method presented in [ 11, and it typically 
reduces the complexity of the  design by two orders of 
magnitudes. 

The second algorithm is for min-max CUDP. It is based 
on  linear programming (Section IV) of reduced dimen- 
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sionality, and also accommodates tolerance specifications 
on  the composite response. For  the particularly important 
case of a flat composite response specification with zero 
tolerance value, this algorithm is further simplified and 
coincides with the Nyquist filter design method of [lo]. 

Nevertheless, the need to use linear programming tech- 
niques practically sets a  limit on the length of the filters, 
due to the high design complexity. To overcome this  ob- 
stacle, the relationship between an important subclass of 
CUDP  and  the window method for FIR filter design is 
pointed out.  It  is shown that  the optimal PTFB  for flat 
composite response specification with zero tolerance value 
can be obtained by the window method provided that an 
optimal window is used. An approximate optimal window 
(AOW) is derived following the analysis of [ l l ]  and [15], 
and its design by the Remez exchange algorithm using an 
available program [4] is presented. The third algorithm is 
based on  the AOW sequence. It is a suboptimal algorithm 
for min-max CUDP, but it results in a  PTFB which is 
only slightly degraded with respect to the optimal solu- 
tion,  and this design method is of reduced complexity. 
Thus, it is  suitable  for  CUDP with relatively long FIR 
filters (typically several hundred taps).  Furthermore,  for 
nonuniform filter banks, the AOW sequence is expected 
to lead to superior designs over  the conventional window 
method. 

The outputs of a  PTFB  are complex valued signals, and 
what is commonly done when real valued outputs are de- 
sired is the addition of proper pairs of outputs of the  PTFB 
yielding a real filter bank (cf. [3]). Unlike the  CUDP  for 
which there always exists a solution which is a  PTFB, 
imposing this filter bank structure usually results in a sub- 
optimal solution for  the corresponding real uniform de- 
sign problem (RUDP).  However,  for applications in 
which this structure is imposed as part of the design spec- 
ifications, the (simplified) design of the optimal (in the 
WMMSE sense) prototype filter is presented. It  is shown 
that this optimal protorype  Jilter differs from the solution 
of the WMMSE  CUDP. 

Although the  design of  Nth band filters, Nyquist filters, 
or partial response filters [lo], [12] are not in the  scope 
of this paper, we point out that the equivalence between 
these problems and the CUDP enables the use of the three 
new algorithms for the design of these filters as well. 

APPENDIX 

Proof of Theorem I :  There  exists at least one optimal 
solution, { -L (as shown in [16]). Let its fre- 
quency responses be denoted by { Hi ( f ) 1 ?= Define 
f i i ( f >  I / N C ~ = ~  H l ( f -  ( I  - i ) / N ) ,   f o r i  = 1, . . .  , N .  It is easy to verify that f i i  ( f ) is the frequency 
response of the ith filter in  a  PTFB. Using the triangle 
inequality, and homogeneity of 1 1  1 1  together with (7a), 
(?c), and (7f) results in 1 1  W ,  ( f )  (D i  ( f )  - 

l / N ) )  1 1 .  Using (7a),  (7c), and (7f) transfers the above 
inequality into: si I 1 / N  E;“= 61.  The  “monotonicity” 

H i ( f > >  II 5 ~ / N c Y = ~  II W o ( f ) ( o o ( f >  - H‘ ( f -  A - 

of 1 1  1 1  T ,  together with the triangle inequality and homo- 
geneity of 11 11 T ,  results in the following inequality: 2- = 

I 1 8 1 1 T ~  ~ ~ l / N C ~ = 1 6 ( ’ ) ~ ~ T ~  l/NCy=l 116(’)11,.How- 
ever, from (7e) this is equivalent to C I E .  Thus,  the PTFB 
achieves the minimal error, and it only remains to show- 
that $, A 11 W,( f )  (D,( f )  - &( f )) 11 s 6,. Rearrang- 
ing the expression for  the composite response of the PTBF 
as a,( f )  = l/NCy=l H,( f - j / N ) ,  using the triangle 
inequality and homogeneity of 1 1   1 1 ,  results in 8, I 1 / N  
Cj”=l 1 1  W , ( f ) ( D , (  f )  - H,! f - j / N ) ) l l .  From  (7b), 
(7d), and (7f) follows that 6,  I a,., and  the proof is 
completed. 

Proof  of Theorem 2: Equation (9) follows from the 
definition of the  PTFB, and equation ( l ) ,  where 
{ a o k  } ;= -L  are  the coefficients of the prototype FIR filter 
with the frequency response H, ( f ). From (2), (3), (7a), 
(7c), and (7f) it follows that in any PTFB  for  a  CUDP  all 
the N components of 6 are  equal.  Thus,  due to the 
“monotonicity” of 11 11 T ,  the optimal prototype mini- 
mizes each component of 6, i.e., it is the solution of (8a). 
Equation (8b) follows from the definition of the PTFB, 
(4), (7f), and the well-known result 

A 

N -  1 
e-j2rik/N = N k E O(modN) 

i = O  0 elsewhere 

which is applicable since L is an  integer value. Since q k  

= 0 for I k I > L, so is a o k r  and  therefore, in (8b), I mN I 
I L. 

Proof of Theorem 3: In the window method Hi ( f ) 
= Di ( f ) * W( f ), with W (  f )  being the frequency re- 
sponse of the window sequence. Using (7a) and elemen- 
tary properties of the convolution operator leads to Hi ( f ) 
= [Do * W ]   ( f  + i / N  + A )  H,( f+ i / N  + A ) ,  i.e., 
the window method always results in  a  PTFB.  The com- 
posite response of this  PTFB is 

N 

H c ( f )  = i =  1 D i ( f > * W ( f )  = [5 i =  1 D i ( f ) I * W ( f )  

= 1 * W( f ) = w, (cf. [8]), 

where we have used the odd length of the window in the 
last  equation.  Thus,  for any window with w, = 1 .  The 
window method results in a  PTFB with 7 = vrn = 0. For 
Do( f ) which is an ideal LPF of bandwidth 1 /2N, the 
coefficients of the corresponding impulse response d,(k) 
are zero only f o r k  = O(mod N ) ,  and d , (o )  = 1/N. 
Therefore, any PTFB with a flat composite response can 
be designed by the window method, provided that the 
proper window sequence is used (i.e., wk = aok/d,(k), 
k f 0 (mod N ), w, = 1 ). In particular,  the optimal PTFB 
can be obtained in this manner by the window method. 
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