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Abstract—The interpolation formula representation and the kernels associated with the Discrete Fourier
Transform (DFT) approach to the interpolation of periodic signals are obtained by viewing the interpolation
process as a filtering operation on a properly defined sequence. This representation provides then the basis for
the derivation of upper bounds on the interpolation error involved.

INTRODUCTION

Let f(t) be a continuous periodic real signal, with period To, and let g(t) be the steady state
response of a linear stable system R to the signal f(¢). Given N equally spaced samples of one
period of f(t), the problem under consideration is that of finding NL equally spaced samples of
one period of g(t), where L =1 is an integer. A simple and computationally efficient method for
performing the desired interpolation is to apply the Discrete Fourier Transform (DFT),
implemented with the FFT algorithm. This method has been considered and discussed (for the
interpolation of f(¢)) in Ref.[1], and is outlined briefly in Refs[2,3]. One of the aims of this
presentation is the derivation of upper bounds on the interpolation error associated with the DFT
approach. The derivation is based on an interpolation formula representation of the interpolation
process. The interpolation kernels which appear in the interpolation formula are derived in a
simple manner, by approaching the interpolation problem as a filtering operation on a properly
defined sequence which is constructed from the given samples. In the following sections the DFT
interpolation procedure is described, interpolation kernels are derived, and, finally, upper bounds
on the interpolation error are found.

DFT INTERPOLATION KERNELS

Let C(k) and B(k), k =0, +1, %2, ..., be the Fourier Series coefficients of the periodic
functions f(t) and g(t), respectively. Then, B(k) = C(k)R(k), where R(k) = R(jwok) is given
from the frequency response R (jw) of the system R and wo =27 /To.

Denoting the given sequence of N samples of f(t) by x(n), n =0,1,...,N~1, and the
desired interpolated NL samples of g(t) by y.(n)=g(nT/L), n =0, 1,...,NL -1, where
T = T,/N, the following relations are known[4] to exist between X k) = DFT {x(n)} and C(k),
and between Y (k) = DFT{y. (n)} and B(k).

X(k)= 3 Ck+mN); Yi()= S B(k+NL). (1)
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The DFT of the sequence x(n) is defined in eqn (2), where Wy = exp (j2« /N).

A

X()=DFTix(m} 2 &3 xWar™, k=0,1,... N~1 @

Yo (k) is similarly defined (with N replaced by NL).
If f(t) is base-band limited, i.e. C(k)=0 for k >M, and N=2M+1, Y.(k) can be
constructed from X(k) and R(k) as shown in eqn (3).

Yo(k)=X(k)R(k); YL(NL-k)=X(N-k)R(~k), k=0,1,...,M;
Yo (k)=0, k=M+1,...,NL-M-1. 3

Now that Y. (k) is known, y. (k) is obtained by inverse transforming Y. (k):

yo (n) = DFT—I{YL (k)} = I:Z—: YL (k)W';qu. (4)
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For the particular case in which R(jw)=1, the interpolation of the input signal f(t)is
obtained and y.(n)=x.(n) = f(nT/L).

The DFT interpolation procedure is therefore as follows: Find X (k) from the given sequence
x(n), construct Y. (k) as in eqn (3), and then apply the inverse transform defined in eqn (4). The

same procedure is also applied when f(f) is not band-limited but with the following
modifications:

(i) If N is odd, use in eqn (3) M =(N —1)/2.
(ii) If N is even, M is given the value N/2, and in addition one should use in eqn (3):

YL(N/2)=X(N[2)R(N/2)[2; Y.(NL —N/[2)=X(N/2)R(-N/2). %)

This last modification, for N even, takes into account the overlap of B(N/2) and B(—N/2)
which occurs at k = N/2; (note that B(N/2) = B*(—N/2)). Inverse transforming the resulting
sequence, which we denote by Y. (k), we arrive at a band-limited approximation . (n) to the
desired sequence y.(n).

We turn now to the interpolation formula representation which is of the form

N-1

Ju(n)=> x(r)ha(n-rL), n=0,1,...,NL -1, 6)

r=0

where hs(n) is an appropriate interpolation kernel. The interpolation kernel can be found by
properly manipulating the expressions given above. However, by viewing the interpolation
process as a filtering operation on the sequence s(n) defined in eqn (7) below, the kernel
derivation is simplified.

The sequence s(n) discussed above is of length NL and is constructed from x (n) by inserting
(L —1) zeroes between every two samples of x(n).

s(n) = Stretch, {x(n)} = {x(0)0. . .0x(1)0.. .0x(N — 1)0.. .0}. )]
Using Theorem 8 in Refs. [4, 5] we have
S(k) = DFT{s(n)}= X(k)/L, k=0,1,...,NL-1. ®

Since X (k) is periodic, with period N, S(k) contains L such periods. Y. (k) as given in eqn (3)
can therefore be constructed by multiplying S(k) by a proper sequence H(k) (i.e. filtering s(n)).
For the non-band-limited case, which is of interest here, the required sequence H(k) is given by
Ho(k) for N odd and by H.(k) for N even, where

Hok)=LR(k); Ho«NL-k)=LR(-k), k=0,1,...(N~-12
®
Hyk)=0, k=(N+1D/2,... NL-(N+1)/2
H.(k)=LR(k); H.(NL —k)=LR(-k), k=0,1,...(N2)-1
H.(N[2)=LR(N/[2)[2; H.(NL-N/2)=LR(-N/2)[2 10
H.(k)=0, k=(N/2)+1,...,NL-(N/[2)+1.

Applying the DFT Convolution Theorem[5], we obtain

NL -1

yu(n) = DFT'{Yy.(k)} = DET'{H(k)S (k)} = ﬁ Zo s(r)h(n—r) (11)

where
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A
h(n) = DFT'{H (k)}.
Using the definition of s(n), according to eqn (7), in eqn (11), the desired interpolation formula
(6) is obtained with

ha(n) =h(n)/NL = DFT"'{H(k)}/NL. (12)

For illustration we present the interpolation kernels obtained for two particular cases:
(i) R(jw) =1 [interpolation of f(¢)], in which case we found

ha(n) =[sin (wn/L)}/N sin (7n/NL), N odd
= [sin (wn/L) cot (wn/NL))/N, N even. (13)
(ii) R(jw)=—j sgn (w) [Hilbert Transform], in which case we found
ha(n) = [cot (wn/NL))IN —[cos (wn/L)}/N sin(=n/NL), N odd
=[cot[wn/NL)][1—cos (swn/L)]/N, Neven. (14)

INTERPOLATION ERROR BOUNDS
The interpolation error under consideration is defined by

e(n) = yo(n)-$.(n), n=0,1,...,NL—1. (15)
It is shown in the Appendix that
leml=e =2 3 1B +BN) (16)

where No=(N +1)/2 for N odd, and No= N/2 for N even, B(k) = C(k)R(k) and

A

Bk)= C(k)R(l_c"); k=kmodN, 0=k<N.. t))

For the two particular cases R(jw) =1 and R(jw) = —j sgn (w) considered above, € becomes
equal to e, where

ol 4;‘; IC(K)| (18)

_ The upper bound in (18) complements the bound obtained in Ref.[6] for non-periodic
interpolation. Such an upper bound can be useful for choosing the sampling rate of a given
function f(t). It is not possible, however, to evaluate ¢ from eqn (18) if we are given only N
samples of f(t). Yet, in some applications there is additional knowledge in the physical process
which generated f(t), so that upper bounds on the first or higher derivatives of f(¢) can be
estimated. The bounds on the derivatives can then be used to bound € as shown below (Part of
the derivation has been motivated by the work in Ref.[7]). .

Let D, be an upper bound on the p derivative of f(t): D, =|f®(t)| (with f(t) = f(¢t)).
Noting that B(k) can be written as

B(k) = C(k)R(k)=[C(k)k?wo” 1 [R(k)/k*wo"] (19)

and applying the Schwarz inequality, we obtain
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€ = k;ﬂ 'B(k)l = LZM‘ lC(k)kPwoPIZ kZN lR(k)/kpCUop'z] . 20)

Observing now that the Fourier series coefficients of f®(¢), which we denote by C, (k), are

related to C(k) by C,(k) = (jwok’C (k), and further, applying the well known Fourier series
equality

3 IG®F=7 [ (f2wr <D, @

as well as |C(=k)| =|C(k)| (f(¢) is real), we find

© 7,
els(D,,/\/(Z))L; |R(k)/k”wo"|2] 2. 22)

When R(jw) is specified, p is chosen so that the series in eqn (22) converges and I, can then be
evaluated. Consider for example a specification of the form

R(jw) = (jw)™, m=0. (23)

For this specification, letting p = m + 1 assures the convergence of the series in eqn (22), and we
obtain that I, is equal to I,(m) where

L(m) = Do i Z(No)V 306 24)
and where
Z(Ny) = Li llkz]”z = [172/6— :21 llkz]m. (25)

A computation of Z(N,) as function of N, shows that it behaves like 1/4/(No) for No > 1. [Z(No)
is within 5% of 1/A/(No) for No=5 and within 1% for No=20.]
Note that the case m =0, (R (jw) = 1) provides an upper bound for € of eqn (18):

€ =41,(0) = 20/(2) D1 Z(No)/ wo. (26)

To obtain an upper bound on ¢ of eqn (16), we still have to consider 2B (k). In general, we can
use:

2 BOI2 =M 3 [CK)| = Mei0) @7
where
Mg = max {R(K)]}. (28)
ke [0, No)

Hence we obtain, from eqns (16), (22) and (27)
€ = 2(61 + 62) < 2[11 + MRIl(O)]. (29)
In general, Mr can be a function of N,. If Mz increases with N, the bound in (29) may not be
useful. However, if R(k)=R(No) for all k > N, as is the case for the example specified in eqn

(23), then we can use €; = ¢, and obtain

€ S4E]S4I|. (30)
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Finally, for the specification in eqn (23), we find from eqns (30) and (24),
€ =4I,(m) =2V (2)Dp1 Z(No) w0 (1)
which reduces to eqn (26) for m =0.

CONCLUSIONS

In most practical applications the interpolation process is most efficiently performed by the
DFT procedure described above. However, this procedure is of algorithmic nature and does not
provide the proper framework for further investigations. On the other hand, the interpolation
formula representation, with the associated kernels, provide a complete and explicit description
of the interpolation process and has here been found useful for investigating the interpolation
error involved.

The filtering point of view taken to describe the interpolation process provides a simple
method for the derivation of interpolation kernels. The error bounds obtained can provide
additional insight into practical interpolation problems.
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APPENDIX
The upper bound, on the interpolation error sequence given in eqn (16), is found as follows:
a . oo . N-i
e(n)=y.(n)—y.(n)= Z B(k)exp [j2mkn/NL]— 2 x(r)hy(n—rL). (A1)
k=—o r=0
Using
x(ry= Y, C(k)expij2nkr/N], r=0,1,...,N-1 (A2)
km—o
we find
e(n)= E C(k)[R(k)exp (j2mkn/NL)— V. (n)} (A3)
k=
where
N-1
Vi(n)= 3 [exp (j2akr/N)ha(n - rL). (Ad)
rag

Recalling that h,(n) is a kernel which yields exact interpolation for band-limited periodic signals, which pass through the
system R, we obtain

Vi(n)=R(k)exp [j2wkn/NL], [k}<No—1

=R(k)exp [j2mkn/NL), |k|= N, 49
except that for N even Vy(n)= R(No)cos(wn/L). From eqns (A3) and (AS5) we find
e(n)= Ikgm [B(k) exp [j2mkn/NL]~ B(k) exp [j2wkn/NL)]+ Bo(n) (A6)
where, for N odd, N, = Ny = (N +1)/2 and By(n) =0, whereas for N even, N, = N,—1=N/2-1, and
By(n)=j{B(N[2)~B(=N|2)]sin (wn/L), N even. (A7)

Now, since |B(N/2)| = |B(—N/2)| and | Bo(n)| < 2|B(N/2)|, we finally obtain the result in eqn (16). Note that, for N even, eqns
(A6) and (A7) can actually yield a somewhat better bound than € of eqn (16), by using |Bo(n)| <2|Im{B(N[2)}|.




