CASCADE DECOMPOSITION OF LINEAR TIME-VARYING DIFFERENCE OPERATORS

Indexing terms: Time-varying systems, Difference equations

Two methods are given for the cascade decomposition of a scalar time-varying difference operator, of order m, under the assumption that m linearly independent solutions of the homogeneous equation are known. The relationship between the two decomposition schemes obtained by the two methods is derived, and an example is given.

Introduction: Certain discrete time-varying systems can be described by a scalar difference equation of the form

$$y(n+m) + a_1(n) y(n+m-1) + ... + a_m(n) y(n) = u(n)$$
 (1)
where $u(n)$ is the forcing function, $y(n)$ is the output, and m

is the order of the system $\{a_m(n) \neq 0\}$. In operational notation, eqn. 1 can be written as $L_m(n) y(n) = u(n)$, where

$$L_m(n) = \sum_{i=0}^{m} a_i(n) E^{m-i}$$
 $a_0(n) = 1$. . . (2)

For time-invariant systems, $L_m(n) = L_m$, and the z transform can be applied for deriving a cascade decomposition of L_m . For time-varying systems, the use of transform methods† is limited and, in general, is not simple. A timedomain approach is therefore chosen, and two decomposition methods are presented.

in which E is the advance operator; i.e. $E_V(n) = V(n+1)$.

Decomposition method 1: The decomposition procedure is based on the reduction of order when a solution of $L_m(n) v(n) = 0$ is known, as shown by Milne-Thomson.² Consequently, it is assumed in this discussion that a set of m linearly independent solutions $\{f(n)\}_m$ of the homogeneous equation $L_m(n) y(n) = 0$ is known. Such is the case when the impulse-response function h(n, k) is known.

- † For example, the use of the generalised system function H(z, n)‡ The response to δ_{nk} (Kronecker delta) is known³ to have the form
- $h(n, k) = \sum_{i=1}^{m} f_i(n) g_i(k)$

where $f_i(n)$, i = 1, 2, ..., m, satisfy the homogeneous equation $L_m v(n) = 0$

According to Milne-Thomson, if $f_1(n)$ is a solution of $L_m(n) y(n) = 0$, a difference equation of order m-1

can be derived. The relationship between $w_1(n)$ of eqn. 3 and y(n) of eqn. 1 is given from

$$y(n) = f_1(n) v_1(n)$$
 $\Delta v_1(n) = w_1(n)$. . (4)

where Δ is the forward-difference operator; i.e.

$$\Delta v_1(n) = v_1(n+1) - v_1(n)$$

Thus, if Δ^{-1} denotes the inverse of Δ ,

$$y(n) = f_1(n) \Delta^{-1} w_1(n)$$

The above corresponds to the realisation of $L_m(n)$ by $L_{m-1}(n)$ of eqn. 3 in cascade with a 1st-order operator $L_1^{-1}(n)$ such that

$$L_1^{(1)}(n) y(n) = w_1(n)$$
 (5)

From eqns. 4 and 5, the schematic representation of $L_1^{-1}(n)$ shown in Fig. 1 is obtained.

Fig. 1 Representation of the 1st-order operator $L_1^{-1}(n)$ D represents a unit delay

A set of (m-1) linearly independent functions which satisfies $L_{m-1}(n) w_1(n) = 0$ is obtained from $\{f(n)\}_m by^2$

$$f_i^{\ 1}(n) = \Delta \frac{f_i(n)}{f_1(n)}$$
 $i = 2, 3, ..., m$. . . (6)

Since $\{f(n)\}_m$ is assumed to be known, the functions $f_i^{-1}(n)$, i=2,3,...,m, can be derived. The reduction of $L_{m-1}(n)$ can now be undertaken in a similar way by using a solution of $L_{m-1}(n)$ $w_1(n)=0$, say $f_2^{-1}(n)$, and decomposing $L_{m-1}(n)$ into $L_{m-2}(n)$ $L_1^{-2}(n)$, so that $L_{m-2}(n)$ $w_2(n)=u(n)$ and $w_2(n)$ is related to $w_1(n)$ by

$$w_1(n) = f_2^{\ 1}(n) v_2(n) \qquad \Delta v_2(n) = w_2(n) . \qquad .$$
 (7)

A set of m-2 linearly independent solutions of

$$L_{m-2}(n) w_2(n) = 0$$

is found from

$$f_i^2(n) = \Delta \frac{f_i^{1}(n)}{f_2^{1}(n)}$$
 $i = 3, 4, ..., m$. . . (8)

Repetition of the above procedure would finally yield the decomposition of $L_m(n)$ into m 1st-order operators,

$$L_m(n) = L_1^m(n) L_1^{m-1}(n)...L_1^1(n)$$

which corresponds to the schematic representation shown in Fig. 2, in which

$$r_1(n) = f_1(n)$$
 $r_i(n) = f_i^{i-1}(n)$ $i = 2, 3, ..., m$ (9)

By repeated use of eqn. 6, one obtains

$$r_{i}(n) = \Delta \left[\frac{1}{r_{i-1}(n)} \left\{ \Delta \frac{1}{r_{i-2}(n)} \dots \frac{1}{r_{2}(n)} \Delta \frac{f_{i}(n)}{r_{1}(n)} \right\} \right] \qquad i = 2, 3, ..., m \quad (10)$$

It is also evident from Fig. 2 that

$$L_{m}(n) y(n) = \frac{1}{r_{m+1}(n)} \Delta \left[\frac{1}{r_{m}(n)} \left\{ \Delta \frac{1}{r_{m-1}(n)} \dots \frac{1}{r_{2}(n)} \Delta \frac{y(n)}{r_{1}(n)} \right\} \right] = u(n)$$
(11)

where $r_{m+1}(n)$ was introduced to ensure $a_0(n) = 1$, as assumed

Fig. 2 Cascade decomposition of $L_m(n) y(n) = u(n)$

in eqn. 2. $r_{m+1}(n)$ must therefore satisfy

$$\frac{1}{r_{m+1}(n)} = r_m(n+1) \, r_{m-1}(n+2) \dots r_2(n+m-1) \, r_1(n+m) \tag{12}$$

It is easily verified, by use of eqns. 9 and 10, that eqns. 11 do satisfy $L_m f_i(n) = 0$, i = 1, 2, ..., m.

Decomposition method 2: Here, $L_m(n)$ is decomposed as

$$L_m(n) = Q_m(n) Q_{m-1}(n)...Q_1(n)$$
 (13a)

where

$$Q_i(n) = E - q_i(n)$$
 $i = 1, 2, ..., m$. . . (13b)

and E is the advance operator. The corresponding schematic representation is shown in Fig. 3.

To satisfy $L_m(n) f_i(n) = 0$, i = 1, 2, ..., m, the $Q_i(n)$ s are chosen so that

$$Q_{1}(n) f_{1}(n) = 0$$

$$Q_{2}(n) Q_{1}(n) f_{2}(n) = 0$$

$$\vdots$$

$$Q_{m}(n) Q_{m-1}(n) \dots Q_{1}(n) f_{m}(n) = 0$$

$$(14)$$

Again, it is assumed that $\{f(n)\}_m$ is known, and hence one can solve eqns. 14 for the operators $Q_1(n), Q_2(n), ..., Q_m(n)$ [i.e. for $q_1(n), q_2(n), ..., q_m(n)$]. It can be shown that eqn. 14 yields the solution

$$q_{i}(n) = \frac{Q_{i-1}(n+1) Q_{i-2}(n+1) \dots Q_{1}(n+1) f_{i}(n+1)}{Q_{i-1}(n) Q_{i-2}(n) \dots Q_{1}(n) f_{i}(n)}$$

$$i = 2, 3, \dots, m \quad (15b)$$

This decomposition method has the advantage (over the first

Fig. 3 Alternative cascade decomposition to that shown in Fig. 2

method) that it can be applied directly to any desired cascade decomposition, e.g. $L_m(n) = L_{m-p}(n) L_p(n)$, where $L_p(n)$ is not necessarily a 1st-order operator.

Relationship between schematic representations: It is possible to obtain the representation of Fig. 3 from that of Fig. 2 by using the equivalence shown in Fig. 4 for every 1st-order operator in the cascade. One then finds [under the condition $r_i(n) \neq 0$; i = 1, 2, ..., m] the relationships

$$q_1(n) = \frac{r_1(n+1)}{r_1(n)} \quad q_i(n) = \frac{r_i(n+1)}{r_i(n)} q_{i-1}(n+1)$$

$$i = 2, 3, \quad m \quad (16)$$

It is also observed, from eqns. 1, 11 and 13, that

$$\prod_{i=1}^{m} q_i(n) = \left[\prod_{i=1}^{m+1} r_i(n)\right]^{-1} = a_m(n) \quad . \quad . \quad . \quad (17)$$

For a given set $\{f(n)\}_m$, one can perform the decomposition by using the functions $f_i(n)$, i = 1, 2, ..., m in any order. It is therefore possible, in general, to obtain m! different decompositions. It is clear, however, that eqn. 17 must be satisfied for all possible decompositions.

Example: Consider the 2nd-order operator

$$L_2(n) = E^2 - 2\{(n+1)/(n+2)\}^2 E + \{n/(n+2)\}^2$$
 (18)

It is found that the functions $f_1(n) = 1/n$ and $f_2(n) = 1/n^2$

Fig. 4 Equivalent 1st-order operators $[s(n) \neq 0]$

satisfy $L_2(n) f_i(n) = 0$; i = 1, 2. Applying eqns. 9, 10 and 12, one finds $r_1(n) = f_1(n) = 1/n$

$$r_2(n) = \Delta \frac{f_2(n)}{r_1(n)} = \Delta \frac{1}{n} = \frac{-1}{n(n+1)}$$
 (19a)

$$r_3(n) = 1/\{r_2(n+1)r_1(n+2)\} = -(n+1)(n+2)$$
 . (19b)

 $r_3(n) = 1/(r_2(n+1)/r_1(n+2)) = (n+1)(n+2)$. Thus, from eans, 11,

$$L_2(n) y(n) = \frac{1}{(n+2)^2 (n+1)} \Delta[n(n+1) \Delta\{ny(n)\}]$$
 (20)

The use of eqn. 15 or eqn. 16 yields an alternative decomposition (the one corresponding to eqn. 13)

$$L_2(n) \; y(n) = \{E - q_1(n)\} \{E - q_2(n)\} \; y(n) \quad . \quad . \quad . \quad (21a)$$

with

$$q_1(n) = n/(n+1)$$
 $q_2(n) = n(n+1)/(n+2)$. (21b)

The validity of eqn. 17 is easily verified:

$$q_1(n)\,q_2(n)=1/\{r_1(n)\,r_2(n)\,r_3(n)\}=\{n/(n+2)\}^2=a_2(n)$$

Conclusions: Two alternative decompositions of a scalar difference operator have been presented and the relationship between them derived. A discrete time-varying system which is specified by its impulse-response function and is describable by eqn. I can be realised in a cascade form by applying the above results.

D. MALAH

17th May 1971

Department of Electrical Engineering University of New Brunswick Fredericton, NB, Canada

USA, May 1970, pp. V.6.1-V.6.11

References

JURY, E. I.: 'Theory and applications of the z-transform method' (McGraw-Hill, 1959), p. 66
 MILNE-THOMSON, L. M.: 'The calculus of finite differences' (Macmillan,

1933), p. 367

3 MALAH, D., and SHENOI, B. A.: 'Synthesis of linear, discrete, time-varying systems from impulse response specification'. Proceedings of the 13th Midwest symposium on circuit theory, Minneapolis,