CASCADE DECOMPOSITION OF LINEAR
TIME-VARYING DIFFERENCE OPERATORS

Indexing terms: Time-varying systems, Difference equations

Two methods are given for 1he cascade decomposition of a
scalar time-varying difference operator, of order m, under
the assumption that s linearly independent solutions of the
homogeneous equation are known. The relationship between
the two decomposition schemes obtained by the two methods
is derived, and an example is given.

Introduction: Certain discrete time-varying systems can be
described by a scalar difference equation of the form

+a,(n) y(n) = u(n) (1

where u(n) is the forcing function, y(n) is the output, and m
is the order of the system {a.(m) # 0j. In operational
notation, eqn. 1 can be written as L,,(n) y(#) = u(n), where

v+ +a (n) y(n+m—1)+ ...

m

L,(n)= % a(mE"! ap(n) =1 R )
izo
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in which E is the advance operator; ie. Ey(n) = y(n+1).

For time-invariant systems, L,(n) = L,, and the
ztransform can be applied for deriving a cascade decom-
position of L,,. For time-varying systems, the use of transform
methodst is limited and, in general, is not simple. A time-
domain approach is therefore chosen, and two decomposition
methods are presented.

Decomposition method 1: The decomposition procedure is
based on the reduction of order when a solution of
L,(n)y(n) =0 is known, as shown by Milne-Thomson.?2
Consequently, it is assumed in this discussion that a set of m
linearly independent solutions {f(n)}, of the homogeneous
equation L,,(n) y(n) = 0 is known. Such is the case when the
impulse-response function h(n, k) is known.}

T For example, the use of the generalised system function' H(z, n)
} The response to d,, (Kronecker delta) is known3 to have the form

hn, k) = ‘_;'1 L) gilk)
, m, satisfy the homogeneous equation L,, v{n) = 0
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where fi(m), i =1,2, ..



According to Milne-Thomson, if fi(n) is a solution of
L, (1) y(n) = 0, a difference equation of order m—1

Ly mw(n)y=uny . . . . . . . . (3

can be derived. The relationship between w,(n) of eqn. 3
and y(n) of egn. 1 is given from

ymy = filmo(n) Ay =wi(my . . . (@)
where A is the forward-difference operator; i.e.

Av(n) = v (n+1)—v (1)
Thus, if A~" denotes the inverse of A,

y(n) = fi(n) A= wy(n)

The above corresponds to the realisation of L,(n) by
L,-.(n) of eqn. 3 in cascade with a lst-order operator
L ,'(n) such that

Ly =w(m . . . . . . . . (5

From eqns. 4 and 5, the schematic representation of L;"'(n)
shown in Fig. 1 is obtained.

Fig. 1 Representation of the 1st-order operator L,'(n)
D represents a unit delay

A set of (m—1) linearly independent functions which
satisfies L, _,(n) wi(n) = 0 is obtained from { f(n)}m by*
film) :
fi(n) T
Since {/f(n)}, is assumed to be known, the functions fi1(n)s
i=2,3, ...,m, can be derived. The reduction of L, (n)
can now be undertaken in a similar way by using a solution
of L,,_,(n) wy(n) = 0, say f,'(n), and decomposing L, (n)
into L, _2(n) L *(n), so that L, _z(n) wo(n) = u(n) and w(n)
is related to w,(n) by

wi(n) = f2' (n) v2(n) Avy(ny = wa(n) . . . (7)
A set of m—2 linearly independent solutions of

Lp—2(n) waln) = 0

Sitln) = A O N ()

is found from

Sit(n)
f2'(n)

Repetition of the above procedure would finally yield the
decomposition of L,,(n) into m lst-order operators,

Lm(n) =1L 1“‘(”) i l(n). L ll(n)

which corresponds to the schematic representation shown in
Fig. 2, in which

) = fin) iy =fitt) i=2,3,....m 9)

By repeated use of eqn. 6, one obtains

fitm = A i=34, ...m. . . . (8

A l.
r:q('?){ ri-2(n)

1, Sl s
ra(n) A }j) i=2,3,...,m (10

ri(n) = A l

ro(n)
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It is also evident from Fig. 2 that

Lu(n) y(n) =

| | 1
A A
Fns 1 (1) rm(1) Py = (1)

I o
A yin) }] = u(n) (1)

ra(m) — ry(n)

where r,, . ; (n) was introduced to ensure aq(#) = 1, as assumed

Tms1(n) m (n) Mme1(n)  raln) ry (M

Fig. 2 Cascade decomposition of L.(n)y(n) = u(n)

in eqn. 2. r, . (n) must therefore satisfy
——— =run+ Dy (n+2)..rs(ntm—=Dr (n+m) (12)
Fms+ l(”)

It is easily verified, by use of eqns. 9 and 10, that eqns. 11
do satisfy L, fi(n) = 0,i = 1,2, ..., m.

Decomposition method 2: Here, L, (n) is decomposed as

Ln(n) = Qm(n) Qu-1(n)...Q (1)

where
Qi(n) = E—qu(n) . (13b)

and E is the advance operator. The corresponding schematic
representation is shown in Fig. 3.
To satisfy L,(n)fi(n) =0, i=1,2, ..
chosen so that
Q(n) fi(n) =0
Qz(") Ql(”)fz(ﬂ) =0 A A V" )}

. (13a)

B2 2, it

., m, the Q;(n)s are

Qm(n) Qm- 1(!1‘). .- Ql(n)ﬂn(") =0

Again, it is assumed that {f(n)}, is known, and hence one
can solve eqns. 14 for the operators Qy(n), Q2(n), ..., Qm(n)
[i.e. for q,(n), q2(n), ...,qm(n)]. It can be shown that eqn. 14
yields the solution

Silnt1)
Si(n)
Qi1 (n+1)Qi_2(n+1)...Q,(n+1) fi(n+1)
Ql-x(ﬂ) Q1—2(-’7)---Q1(”)fl(’7)
i=273...,m (15b)

This decomposition method has the advantage (over the first

WS 3 n y(n)

q,(n)

q,(n) = . (15a)

qi(n) =

Fig. 3 Alternative cascade decomposition to that shown in
Fig. 2

method) that it can be applied directly to any desired cascade
decomposition, e.g. Ln(n) = Ln_p(n) L,(n), where L,(n) is not
necessarily a lst-order operator.

Relationship between schematic representations: It is possible
to obtain the representation of Fig. 3 from that of Fig. 2 by
using the equivalence shown in Fig. 4 for every lst-order
operator in the cascade. One then finds [under the condition
rdm) # 0;i = 1,2, ..., m] the relationships

+1 (n+1
_ ri(n+1) a0 = rin+1)

ry(n) Fin, et H

i=2,3,...,m (l6)

1t is also observed, from eqgns. 1, 11 and 13, that

m m+ 1 =1
IT qi(m) = [I‘Ir:(n)] =iy « « o « (17

i=1 i=1
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For a given set {/(in)},, one can perform the decomposition
by using the functions f;(nn), i = 1,2, ..., m in any order. It
is therefore possible, in general, to obtain m! different
decompositions. It is clear, however, that eqn. 17 must be
satisfied for all possible decompositions.

Example : Consider the 2nd-order operator
Li(n)y = E>=2{(n+1)/(n+2)}2 E+{n/(n+2)}? (18)
It is found that the functions fi(n) = I/n and f2(n) = 1/n?
u(n) y(n)

1/s(n+1) s(n) y()
b= T
<

qln) =s(n+1)/s(n)

Fig. 4 Equivalent 1st-order operators [s(n) + 0]

satisfy L,(n) fi(n) =0; i = 1,2. Applying eqns. 9, 10 and
12, one finds
ro(n) = fi(n) = 1/n

o o Jalm 1 =l
Rl A ) A n nln+1) (L0
ry(n) = 1/{ra(n+ Dri(n+2)} = —(n+ D(n+2) .. (198)
Thus, from eqgns. 11,
Lo(n)y(n) = Aln(n+1) Alny(n)}] (20)

(n+2)? (n+1)

The use of eqn. 15 or eqn. 16 yields an alternative decom-
position (the one corresponding to eqn. 13)

Ly y(m) = {E=q(mMHE—=q:(m); y() . . . (2la)
with

qi(n) = nf(n+1) g:2(n) = n(n+D)/(n+2). . (21h)

The validity of eqn. 17 is easily verified:
qinyqa(my = H{rimra(n) rs(n)} = {(nf(n+2);* = az(n)

Conclusions: Two alternative decompositions of a scalar
difference operator have been presented and the relationship
between them derived. A discrete time-varying system which
is specified by its impulse-response function and is describable
by eqn. | can be realised in a cascade form by applying the
above results,
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