
1056 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

Quality Preserving Compression of a Concatenative
Text-To-Speech Acoustic Database

Tamar Shoham, David Malah, Life Fellow, IEEE, and Slava Shechtman

Abstract—A concatenative text-to-speech (CTTS) synthesizer
requires a large acoustic database for high-quality speech syn-
thesis. This database consists of many acoustic leaves, each
containing a number of short, compressed, speech segments. In
this paper, we propose two algorithms for recompression of the
acoustic database, by recompressing the data in each acoustic
leaf, without compromising the perceptual quality of the obtained
synthesized speech. This is achieved by exploiting the redundancy
between speech frames and speech segments in the acoustic leaf.
The first approach is based on a vector polynomial temporal de-
composition. The second is based on 3-D shape-adaptive discrete
cosine transform (DCT), followed by optimized quantization. In
addition we propose a segment ordering algorithm in an attempt
to improve overall performance. The developed algorithms are
generic and may be applied to a variety of compression challenges.
When applied to compressed spectral amplitude parameters
of a specific IBM small footprint CTTS database, we obtain a
recompression factor of 2 without any perceived degradation in
the quality of the synthesized speech.

Index Terms—Acoustic leaf compression, concatenative text-to-
speech (CTTS), discrete cosine transform (DCT), shape-adaptive
DCT (SADCT), temporal decomposition (TD).

I. INTRODUCTION

A STANDARD concatenative text-to-speech (CTTS)
system is illustrated in Fig. 1. To obtain high-quality

speech a large number of short speech segments must be stored
in the segment inventory. These segments are organized in
acoustic leaves, where all speech segments in a leaf belong
to the same sub-phoneme in the same context. In small foot-
print CTTS systems, i.e., CTTS systems with low memory
consumption, each speech segment is usually represented by a
parametric model. Specifically, in IBM’s system [1], on which
the proposed algorithms were evaluated, each acoustic leaf
contains 5–10 speech segments, with each speech segment
consisting of 1–35 frames, with a median number of frames
of 2. As detailed in [1], for each frame of 10-ms duration, a

Manuscript received December 19, 2010; revised May 17, 2011; accepted
September 12, 2011. Date of publication October 10, 2011; date of current ver-
sion January 25, 2012. This research was performed at the Signal and Image
Processing Lab (SIPL), Technion–Israel Institute of Technology, in collabora-
tion with IBM’s Haifa Research Labs (HRL). The associate editor coordinating
the review of this manuscript and approving it for publication was Mr. James
Johnston.

T. Shoham and D. Malah are with the Department of Electrical Engi-
neering, Technion-Israel. Institute of Technology, Haifa 32000, Israel (e-mail:
tshoham3@gmail.com; malah@ee.technion.ac.il).

S. Shechtman is with IBM Haifa Research Labs, Haifa 3200, Israel (e-mail:
slava@il.ibm.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2011.2170974

Fig. 1. Illustration of a concatenative text-to-speech synthesizer.

vector of 32 amplitude parameters and a variable length vector
of phase parameters. The amplitude parameters represent
the spectral envelope of the frame, sampled in Mel-scale to
match perceptual characteristics of the auditory system. During
speech synthesis an appropriate acoustic leaf is selected for
each sub-phoneme. A speech segment within a leaf is selected
based on spectral and pitch smoothness criteria, combined with
target prosody similarity metrics. The stored model parameters
are used to synthesize the speech, possibly after modifications
such as changing pitch or duration. The synthesized speech
segment is then concatenated to the previously synthesized
speech, as detailed in [2]. We wish to further compress the
parameters stored in these acoustic leaves, thus further reducing
the CTTS footprint, without perceptually reducing the obtained
synthesized speech quality. We refer to the compression algo-
rithm also as recompression, to indicate that the compression is
performed on the acoustic leaf data which has already under-
gone a compression stage, rather than operating on raw data,
which is sometimes, as in our case, no longer available.

A similar issue was addressed in [3], where Kain and Santen
propose to compress acoustic inventories by performing asyn-
chronous interpolation of templates representing the beginning
and end of each di-phone (an acoustic unit corresponding to two
phonemes). While this approach achieves a high compression
ratio it comes at the price of poor perceptual quality and low
flexibility.

In the system we used for algorithm validation the amplitude
parameters footprint is much larger than that of the phase param-
eters, therefore we focused on the amplitude parameters. Thus,
we are faced with the following recompression challenge: fur-
ther compression of amplitude spectral parameters arranged in
acoustic leaves comprising of 3-D arrays of varying dimensions.
An example of this acoustic leaf structure is shown in Fig. 2.

The algorithms were designed without tailoring to the
specifics of the setup used for their evaluation. Thus, the ob-
tained algorithms are generic and may be applied to a wide

1558-7916/$31.00 © 2011 IEEE

SHOHAM et al.: QUALITY PRESERVING COMPRESSION OF A CTTS ACOUSTIC DATABASE 1057

Fig. 2. 3-D structure of an acoustic leaf. The vertical dimension corresponds to
the segment number, the horizontal to the frame number within the segment, and
the “depth” dimension corresponds to the vector of parameters that represent the
spectral envelope of each frame.

range of recompression challenges. Examples include recom-
pression of sign language databases, compression of databases
used for image classification in bag-of-words methods, or any
other database that consists of many data “buckets” containing
data organized in 2-D or 3-D structures that exhibit redun-
dancy. An additional algorithmic design requirement was low
complexity decoding, since decompression, or in our case the
speech synthesis, is generally performed on end devices with
limited resources.

In this paper, we propose two compression approaches. In the
first, which we have briefly described in [4], we use a vecto-
rial form of polynomial temporal decomposition (TD) to obtain
compression. In this approach, the speech segments are con-
catenated so that the compression is applied to a set of 2-D
data units. In the second approach, we propose to apply the
3-D shape-adaptive discrete cosine transform (3-D SADCT) to
each acoustic leaf. By working on the original 3-D structure, we
hope to remove not only the temporal redundancy between ad-
jacent speech frames, but also the redundancy between speech
segments that belong to the same leaf, and hence expected to
be similar. This incurs the price that reconstruction of a single
speech segment requires performing the inverse SADCT for the
entire leaf. In addition, we will also present a segment ordering
algorithm which may be applied prior to compression in an at-
tempt to improve overall performance. The proposed algorithms
were evaluated by applying them to the amplitude parameters of
an IBM CTTS voice (U.S. English, female). In our evaluations
we focused on the amplitude parameters, whose original foot-
print in the system we used is 5.7 MB. The phase parameters,
with a footprint of only 1.6 MB, remain unaltered. We will show
that we achieve a recompression factor of 2 of the amplitude pa-
rameters, in both approaches, without compromising perceptual
quality relative to the original synthesized speech of [1], as mea-
sured by perceptual evaluation of speech quality (PESQ) [5]—a
relative perceptual quality measure, and confirmed in compara-
tive listening tests.

This paper is structured as follows. In Section II, we present
the polynomial temporal decomposition-based compression al-
gorithm. In Section III, we present the 3-D SADCT-based com-
pression including a novel approach to joint bit-allocation and
a splitting scheme for vector quantization (split-VQ) design.

The segment reordering algorithm is described in Section IV.
In Section V, we present the experimental setups and results of
a quality evaluation of the proposed algorithms, followed by the
conclusion in Section VI.

II. COMPRESSION USING VECTOR POLYNOMIAL

TEMPORAL DECOMPOSITION

In this section, we describe one of the proposed algorithms
for acoustic leaf (re)compression—vector polynomial temporal
decomposition.

Temporal decomposition (TD) describes a set of compression
methods which attempt to exploit the temporal redundancy in
the data by representing the evolution of either a scalar param-
eter (scalar TD) or a parameter vector (vector TD) over time.
The parameter trajectory is represented with a reduced order
model, thus achieving compression. The vector TD method was
first introduced in [6] and has been used for low rate speech
coding in many previous works including [7]–[12]. In these
methods, the original parameter vectors are represented by a
set of event times or locations, event vectors, and interpolation
functions. These algorithms generally require at least ten con-
secutive frames per segment to be effective, which is not the case
for our database which mainly consists of very short speech seg-
ments. Another limitation of these vector TD approaches is that
the interpolation functions are identical for all vector elements.
Therefore, they do not apply well to cases where different el-
ements in the vector have different trajectories, which is often
the case for the CTTS acoustic leaf data. A DCT-based Scalar
TD approach proposed in [13], was shown there to be beneficial
mainly for the low harmonics of voiced speech, of 10–20 con-
secutive speech frames. This approach, which includes adaptive
model order selection, has been extended to cepstrum parame-
ters and LSF parameters in [14] and [15], respectively. In all
these works the underlying speech is assumed to be continuous,
and categorized as voiced or unvoiced, rather than consisting of
short disconnected segments, containing mixed voiced and un-
voiced frames, as in our case.

In [16] and [17] Dusan et al. present an alternative scalar TD
approach, polynomial scalar TD. In this approach, the trajectory
of each scalar (vector element) value along the frame segment
is approximated by a th-order polynomial, with .
The approximation is done using the least squares method, so as
to minimize the distance between the actual trajectory and the
polynomial. This is illustrated in Fig. 3. Since polynomial coef-
ficients are sensitive to quantization, the polynomial is sampled
at points, and the obtained values, that lie in the orig-
inal feature space, are coded and transmitted. For synthesis, the

features are used to uniquely find the th-order polyno-
mial, which is re-sampled at all the original points. A sim-
ilar approach was presented by Nygaard et al. in [18] and [19],
for the compression of ECG signals. These works deal with a
scalar setup only, using a signal which is approximately piece-
wise linear, and propose to use either linear interpolation (in
[19]) or fitting with second-order polynomials (in [18]). It is
therefore, in a way, a subset of the polynomial TD approach,
though a different application of it.

1058 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

Fig. 3. Illustration of scalar Polynomial-based TD for a single TD segment
with � � �� frames and a polynomial order � � �. The asterisks mark the
actual parameter values at each of the ten frames, the dashed line is a piecewise
linear approximation of their trajectory, and the solid line shows the approxi-
mating polynomial trajectory.

A. Proposed Vector Polynomial TD Algorithm

When attempting to apply temporal decomposition to CTTS
speech segments, we must keep in mind that the data consists
mainly of very short segments, often including transitions be-
tween voiced and unvoiced frames. Therefore, it seems that of
the above approaches, the most appropriate model is the scalar
polynomial TD, which applies well to short segments, as it
readily adapts to very short segments by decreasing polynomial
order.

We wish to benefit also from the advantages of vector TD, as it
incurs reduced overhead due to joint modeling of all parameters
in the vector. Another advantage of vector TD is that the event
targets can be quantized and coded with the same tools used to
code the original feature vectors, as they lie in the same space.
We shall also incorporate adaptive model order selection, as pro-
posed by Girin et al. in [13], [14], and [15] for their DCT-based
approach, in order to obtain a consistent error, rather than using
a constant model order as in the scalar polynomial TD proposed
in [17].

Combining all of the above, we propose the following. For
each segment of length , we perform scalar polynomial TD
for each of the amplitude parameters. However, we select an
optimal polynomial order, jointly for all the trajectories. Then
we sample these polynomials at the same points, and thus we
perform a form of vector TD. The polynomial sampling points
are our event locations, event targets are the sample values re-
combined into vector form and event (interpolation) functions
are implicitly given by the interpolation polynomials. An advan-
tage of this approach over classic vector TD is that each vector
element may have a different interpolation function, which is
well matched to its trajectory—the only common factor between
the interpolation functions being that they belong to the class of

th-order polynomials. We will address the selection of , the
number of frames in the TD segment, and the polynomial or-
ders, , which are both adaptive, as this constitutes the central
challenge in applying the vector polynomial TD algorithm to
the CTTS acoustic database.

To apply our TD-based algorithm to each acoustic leaf, we
begin by concatenating the speech segments in the leaf to ob-
tain one long super-segment. The order of the speech segments
is either according to their original order in the leaf, or else
determined according to the proposed segment ordering algo-
rithm described later, in Section IV. Since we do not expect
smoothness to hold for the entire super-segment, we perform
sub-segmentation into TD segments in an optimal manner, as
described in the following section. Then, the vector polynomial
TD is applied to the parameters of each TD segment. Our goal
is to reach a target rate while minimizing the obtained dis-
tortion. We found that the minmax approach, i.e., minimizing
the maximum distortion, provides better perceptual quality than
minimizing mean distortion. Also, we limit the allowed distor-
tion jointly over the entire database, to obtain consistent quality,
while achieving the overall target rate or compression ratio, al-
lowing variation of compression ratio among leaves. This ap-
proach outperforms enforcing the target compression ratio on
each leaf.

Thus, our constrained optimization problem can be described
as follows: assuming a calculated, per-frame, distortion value,

, (discussed in Section V-A) measured between each pair of
stored (quantized) and reconstructed speech frames, the global
distortion is defined as

(1)

We wish to find the smallest global distortion, , for which the
target rate is obtained. i.e.,

(2)

Since the rate is a monotonic non-increasing function of the
distortion, we can adopt an iterative solution, similar to the one
proposed in [20, Ch. 4]. We define a rate-distortion structure,

, that holds the distortions obtained in the previous itera-
tions, and enables an efficient bi-section search for the optimal
distortion value. This structure also holds the target rate and tol-
erance range. The tolerance is necessary due to the step-wise
nature of the rate distortion function, which does not guarantee
convergence to an exact target value. At each iteration,
holds the current lower and upper distortion values, and ,
which define the ends of the “active” interval, within which we
are trying to pinpoint our target working point. The TD algo-
rithm steps are described in “pseudo-code” in Algorithm 1. Note
that the proposed algorithm allows for automatic adaptation to
any target rate or compression ratio.

Algorithm 1: Vector Polynomial TD—Algorithm for
converging to target bit-rate with minmax distortion

1) Initializations:
a) Set target rate, and tolerance range.
b) =0, =default maximum distortion value.

2) Search-range determination:
a) Perform polynomial TD as described in

Section II-B for each leaf in the database, limiting
maximum allowed distortion to , and set
to the obtained overall rate.

SHOHAM et al.: QUALITY PRESERVING COMPRESSION OF A CTTS ACOUSTIC DATABASE 1059

b) Verify . If not, double value and
GOTO 2a.

3) Calculate value for : .
4) Perform polynomial TD as described in II-B for

each leaf in the database, limiting maximum allowed
distortion to , and set to the obtained overall
rate.

5) IF is within the tolerance range of the target rate,
,: GOTO 7.

6) IF : , ELSE: ; GOTO
3.

7) ; END.

The need for step 2 in Algorithm 1 stems from the fact that on
one hand, we do not wish to initialize our interval with a value
of (highest distortion in examined interval) that is too high
and will incur unnecessary iterations. For instance we could set
the initial distortion to its maximum by transmitting no data, but
then we would need quite a few iterations to narrow our interval
to the relevant values. On the other hand, we must make sure that
our initial is high enough to assure that the working point
we seek lies within the designated interval—which is exactly
what step 2 does.

Note that we perform simple bi-section, as proposed in [20].
We also evaluated the option of performing a weighted bi-sec-
tion search, but found that in many cases the convergence was
actually slower due to the nonlinearity of the rate-distortion
function.

When calculating the obtained rate we take into account,
for each TD segment, the bits incurred by coding the param-
eters, and also the required overhead bits. We use the IBM
split-VQ quantization (described in [21]) taken from the test
CTTS system, which uses 86 bits to represent each amplitude
parameter vector of 32 coefficients. Therefore, for each TD
segment of length frames, represented with a th-order
polynomial, the full rate is , and the obtained rate is

, where the overhead consists of the
bits required to represent the TD segment length and selected
polynomial order.

B. Jointly Optimal Segmentation and Polynomial Order
Selection

We cannot presume that smoothness assumptions will hold
for the entire super-segment, and as we also wish to use low
order polynomials, to limit complexity and increase stability,
we must perform segmentation of the super-segment into a
number of TD segments. The advantage of this approach, as
opposed to just using the original speech segments, is that
we could concatenate speech segments that join smoothly,
while we “break-up” speech segments with discontinuities. We
will now describe the proposed algorithm for jointly optimal
segmentation and polynomial order selection, which is based
on the algorithm presented in [22] and [23]. In these works,
Prandoni and Vetterli propose joint segmentation of speech
samples with selection of an optimal LPC model order, and

Fig. 4. 2-D structure for optimal segmentation. Each point in this generalized
trellis may connect to any point in the columns to its left. Dotted lines illustrate
all the paths considered, solid line shows optimal path.

joint segmentation and polynomial order selection for piece-
wise smooth continuous functions, respectively. The main
innovation in our algorithm is that we have an additional di-
mension. Our “input parameter,” for which we seek to perform
segmentation and model order selection, is actually a vector,
holding the frames’ spectral features. Therefore, we expand
the 2-D solution proposed by Prandoni and Vetterli, to a 3-D
solution, as described next.

We define a generalized 3-D trellis structure. The need for
a generalized trellis stems from the dependencies between the
segmentation decisions, which invalidates the assumption of in-
dependency used in a regular trellis. The horizontal dimension
of the 3-D generalized trellis, corresponds to the candidate TD
segment termination points (segment ends), the vertical dimen-
sion corresponds to TD segment length, and the depth dimen-
sion corresponds to candidate polynomial orders. Each point

in this structure is assigned a cost, based on the distor-
tion calculated for a TD segment that ends after frame , con-
sists of frames and uses a polynomial of order . The cost
function used is described in Section V-A. Then we “flatten”
the structure as follows: At each trellis point, defined by , the
value of is set to —the lowest polynomial order
for which the resulting distortion in the corresponding TD seg-
ment does not exceed the current value of . Thus, we obtain
a 2-D generalized structure, as shown in Fig. 4 containing the
points , through which we wish to find the optimal
path.

The initial state , is a virtual state that provides a “root”
for the trellis, i.e., a point where all paths must begin. Once costs
have been assigned to each state in the trellis, we step through
the trellis and calculate the accumulated costs at each point. For
each column, or value of , we find the state that has the
lowest accumulated cost, and mark it with a star. The accumu-
lated cost calculated for is added to the cost of any path
that starts at the following frame: . When the end of the
trellis is reached, we perform backtracking from the state with
the lowest cost in the last column, back through the trellis, until
we reach the root. During the backtracking we store the selected
segmentation points and their preselected corresponding poly-
nomial orders. This is illustrated in Fig. 4, for a five column
trellis.

1060 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

III. COMPRESSION USING 3-D SHAPE-ADAPTIVE

DISCRETE COSINE TRANSFORM

A. 3-D SADCT Overview

The discrete cosine transform (DCT), an energy preserving
reversible transform, is widely adopted for redundancy removal
due to its energy compaction property and the fact that it is sep-
arable, real valued and easy to compute. Speech coding using
2-D-DCT has been proposed in the past, for instance in [24]
and [25]. Due to the variability in the segment lengths, in order
to apply DCT to our 3-D structure (Fig. 2), we must use a varia-
tion of the DCT, known as shape-adaptive DCT (SADCT) [26],
which we now describe. The regular 3-D DCT is defined by the
following equations:

(3)

where

otherwise.
(4)

are the transform coefficients whose squared values
represent the energy present in the acoustic leaf at the corre-
sponding 3-D frequency.

Note that the 3-D DCT transform is separable, i.e., the same
result can be obtained by first applying a 1-D DCT along the first
dimension, to obtain , then applying a 1-D transform
to these values along the second dimension to obtain ,
and finally applying a 1-D DCT along the third dimension to
obtain .

The 2-D SADCT, first proposed in [26], was originally de-
veloped for efficient coding of arbitrary shaped image segments
in video. In [26], Sikora and Makai also provide a statistical
analysis showing that the energy compaction property of the
DCT is retained in SADCT with a “reasonable” contour. In [27],
Markman and Malah extended this concept to 3-D SADCT and
applied it to hyperspectral image coding.

SADCT exploits the separability of the regular DCT trans-
form, and performs the DCT transforms in each dimension con-
secutively. For 2-D SADCT, as defined in [26], first a varying di-
mension 1-D vertical transform is applied to each column. After
these are completed, a varying dimension 1-D horizontal trans-
form is applied to the obtained coefficients of each row. For 3-D
SADCT this is then repeated for the third dimension. The 3-D
SADCT applies to general contours; however, our case is sim-
pler, as in each acoustic leaf the variability is only in one dimen-
sion, which corresponds to the number of frames per segment.
Also, as opposed to the general case which requires additional
storage for the contour, our “contour” is well defined by the
number of speech segments in the leaf (vertical dimension), and
their lengths (horizontal dimension), which are already stored

Fig. 5. 3-D SADCT applied to a sample acoustic leaf. Shifting is required only
along the vertical (segment number) dimension. The DCT Basis function lengths
are adapted to the length of each column (segment number within leaf) or row
(frame number within segment), and are fixed at 32 for the depth (feature vector)
dimension.

in the leaf header. The parameter vector length, which defines
the third dimension, is fixed.

We apply the 3-D SADCT to each acoustic leaf as illustrated
in Fig. 5, by performing required shifts (to eliminate “holes”
when segments are not stored according to length) and subse-
quent 1-D DCT transforms. The length of the basis functions
used is adapted to the length of the data in each column (segment
number) or row (frame number) and is fixed to 32 for the depth
dimension. This provides our 3-D variable dimension array of
SADCT coefficients.

B. Compacting Acoustic Leaf Energy Using 3-D SADCT

As explained above, the 3-D SADCT is readily applied to the
3-D acoustic leaf structure. In order to evaluate the contribution
of this transform in removing redundancies within the leaf, we
evaluated the energy compaction of the obtained coefficients. If
we manage to concentrate the energy into few, low frequency,
coefficients, this indicates that we have done a good job at re-
moving redundancies and will be able to obtain compression.

The property of energy compaction is illustrated in Fig. 6, for
300 sample leafs, by displaying the ratio between the number of
coefficients we must retain in order to represent 95% of the total
energy, and the original number of features in the leaf. This is
shown for the original features and for DCT and SADCT coef-
ficients. The DCT is performed on the bounding cube, with zero
padding. From Fig. 6, it is clear the SADCT substantially and
consistently outperforms the other two representations in terms
of energy compaction. It is interesting to note the points where
the DCT graph rises above 1. This is due to the fact that the
artificial edge between the feature values and the zeros in the
bounding cube adds some high frequency elements to the DCT
coefficients. Since the DCT coefficients are not zero outside the
feature support area, we may actually require more DCT coef-
ficients than the original number of features to retain 95% of
the total energy. It is also apparent that when the features re-
quire keeping of relatively more values (top line goes up), the

SHOHAM et al.: QUALITY PRESERVING COMPRESSION OF A CTTS ACOUSTIC DATABASE 1061

Fig. 6. Energy compaction of original features, DCT and SADCT coefficients,
shown via the ratio between the number of coefficients that hold 95% of the
total energy and the total number of elements in the leaf, for a set of 300 leaves
(horizontal axis). The top (black) line corresponds to the original features (avg.
ratio: 0.57). The bottom (blue) line in the left graph corresponds to DCT (0.33).
The bottom (red) line in the right graph to the SADCT (0.22).

SADCT can manage with relatively less values (bottom line in
the right graph goes down).

To summarize, it is apparent that 3-D SADCT provides good
energy compaction when applied to our acoustic leaves, which
justifies further pursuit of this approach.

C. Quantizer Design for 3-D SADCT Coefficients

We have shown that 3-D SADCT applies well to 3-D acoustic
leaves, and assists in redundancy removal. However, to obtain
compression, we must develop an appropriate quantization
scheme. As opposed to the case of polynomial-based TD,
where we obtain vectors for coding which can reuse the ex-
isting quantizer, in the case of 3-D SADCT the parameters for
coding lie in a different space, which requires design of an
appropriate quantizer.

We evaluated the algorithm performance for a target recom-
pression factor of 2 compared to the IBM system we used,
which applies an 86-bit vector quantizer to each 32-element
vector. This means our target is to obtain a rate of about 1.3 bits
per coefficient, which is unattainable with scalar quantization,
even when using run-length encoding techniques. Thus, we
also pursue a vector quantization (VQ) approach. Previous
works in the area propose a variety of approaches. In [28],
a framework for bit allocation in a multi quantizer setup is
proposed. Assuming a pre-known split of the data between
quantizers, as in sub-band coding for instance, they propose a
method of allocating the bits between the quantizers finding
the allocation that yields minimum distortion. We cannot use
this approach since we do not know how to split the data in
advance, and also since we do not have a closed form distortion
function, required for this algorithm, as we wish to minimize
perceptual error in the reconstructed speech. In [29], an op-
timum transform domain split VQ method is developed, and
both an optimal approach and a faster, sub-optimal, approach
to finding the vector split points are presented. However, the
algorithm is not easily adapted to the varying dimensionality
of our data. Also, the source data distribution is assumed to
be Gaussian, whereas our DCT coefficients are closer to a
Laplacian distribution. In [27], where quantization of 3-D DCT
coefficient arrays is required, two approaches are presented.

In the first, a 3-D quantization matrix is applied and then the
coefficients are coded in a run-length scheme. Alternatively, the
3-D coefficients are scanned into a single vector of increasing
frequency coefficients and quantized with a split VQ approach
using heuristically determined splitting points. A matrix quan-
tization approach, such as the one used in [30], is difficult to
apply here due to the varying dimensions.

We opted to pursue a methodical split VQ approach, which
requires solving the following problems:

• finding a method for splitting the 3-D structures into “man-
ageable” sub-units;

• performing allocation of bits to the various units;
• designing a vector quantizer (VQ) for each unit.
We found that the best results were obtained by performing

the splitting and bit allocation jointly, as we describe in the fol-
lowing subsection. We will then address the issue of the VQ
design.

1) Joint Bit Allocation and Splitting Algorithm: The data we
wish to code is a set of 3-D coefficient arrays, one for each of
the acoustic leaves, obtained after performing 3-D SADCT
on each leaf. The th leaf is represented by a set indices ,
where corresponds to the segment index, and

is the number of segments in the leaf, corresponds to
the frame index within the segment (after SADCT shifting),

where corresponds to the original segment
lengths, and corresponds to the parameter vector index,

, where is the number of parameters per
frame, which in our setup is constant at 32. An example of such
a 3-D array is shown in Fig. 5.

We perform the splitting and bit allocation in two stages.
First, we ignore the index, and split the indices into M
groups, and determine the bit allocation for each group. Then
for each of the groups, we find an optimal splitting and bit
allocation along the index. In both stages, the DC coeffi-
cient is treated separately from the remaining AC coefficients,
as its behavior under quantization is different. We now present
a methodical splitting and bit allocation algorithm, which will
be applied twice—with slight variations, once for each stage.

STAGE I
In the first stage we begin with a 2-D array with indices .

Each 32 element vector in each acoustic leaf is associated with
the appropriate index combination . For each
the corresponding set of vectors is the collection of all the vec-
tors in the acoustic databases with the indices

. We wish to divide these index pairs into groups,
so that each group comprises a specific set of pairs, and
also determine an appropriate bit allocation for the groups of
corresponding vectors. We found that , i.e., one DC
group containing the vector from each acoustic
leaf, in addition to 4 AC groups, provided a good working point.
The DC group receives an empirical allocation of 50 bits, for
each 32 element vector.

In order to use known bit allocation approaches, such as
the one described in [31, Ch. 8], some data statistics must
be gathered. To obtain robust statistics, despite the varying
dimensionality of each leaf, i.e., varying segment lengths and
varying number of segments per leaf, we compose two 2-D ar-
rays: holding the standard deviation of the coefficient

1062 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

vectors with indices , and which holds the total
number of vectors that exist in the transformed database with
indices . For instance, for , every acoustic
leaf has a representative vector so , the total
number of leaves in the database used; whereas, for instance,

, since only 326 leaves have nonzero vectors with
.

Next, we need to calculate an average bit rate that will result
in our target bit-rate of 43 bits per vector. Due to the varying
dimensionality between leafs, i.e., the varying number of
segments and speech segment lengths, this becomes nontrivial.
To understand this, imagine the following example. Say that
with our allocation of 43 bits per vector we use 53 bits for
the ten lowest frequency coefficient vectors and 33 bits for
the remaining coefficient vectors. This will not result in an
average of 43 bits per vector since there are more low fre-
quency coefficients in the database than high-frequency ones.
Therefore, we use an iterative process, which for a given target
bit-rate (43 bits), proposes an average bit allocation value, per
vector: , where is the current iteration number, and
finds the corresponding bit allocation and splitting scheme as
described next. Then, the actual average obtained bit-rate (per
vector) is calculated, using , and the average bit allocation
is modified appropriately. The iterations continue until the
obtained average bit-rate is within an allowed tolerance of the
target bit-rate, i.e., 43 bits per vector.

Each iteration of the algorithm, used for the first stage split-
ting and bit allocation, is as follows. Using perform bit
allocation for each using the following equation (based
on [31]):

(5)

where are weights, selected this way to
prioritize low frequency coefficients, is the number of
non-DC combinations of for which , and

.
The DC component, , is classified as the first group, and

as previously mentioned, receives 50 bits for its 32 elements.
Then the remaining bit-allocation values, one for each
pair, are clustered into groups, with a simple clustering
algorithm using Euclidean distance. The bit allocation for each
group is then the centroid of the corresponding cluster. The ob-
tained bit-rate is calculated and, if needed, is corrected and
the next iteration begins. This continues until the target bit-rate
is reached, typically after about a dozen iterations.

This algorithm results in groups of vectors, and a target
bit allocation for each group,

. The obtained bit allocation for our database is provided in
Section V-B.

STAGE II
Now, for each group, we require a splitting scheme and bit al-

location along the dimension, where , using the

same underlying algorithm. Since the data is now 1-D and with
constant length, the algorithm is more straightforward. Again,
we begin by allocating bits to the first element (DC). The DC
element F(1,1,1), i.e., DC in all dimensions, receives an em-
pirical bit allocation of bits. The bit allocation
for the DC element of the th group for is:

. Once the DC elements have an al-
location we proceed to perform the splitting and bit allocation
for the remaining 31 AC coefficients in each of the M groups,
i.e., . For the th group, the standard deviation
of each vector element is calculated, using only the elements of
the vectors that belong to that group. Then, for each group, we
perform an allocation of bits among the 31 non DC elements
in the vector using a 1-D bit allocation formulation, along the
lines of (5), with

and .
These 31 AC bit allocation values are clustered using an itera-

tive clustering algorithm, under the constraint that no subvector
shall have more than eight elements. This constraint is required
to limit the size of the resulting codebooks so that their foot-
print is no larger than the footprint of the codebooks in the IBM
system we used (about 2 kB). The iterative clustering starts with
two clusters, then in each iteration one cluster is added and the
values are reclustered. This continues until the largest cluster
has no more than eight elements. Then the bit allocation for each
sub-vector, in each group, is the rounded sum of the allocations
of its elements. The results of this process for our database are
provided in Section V-B.

As we have shown, the proposed methodical splitting and bit
allocation algorithm can be used for both fixed length data (vec-
tors of length 32) and 2-D data with variable lengths, i.e., where
each data unit, such as our acoustic leaf, has a different number
of rows and a different number of columns per row. It may thus
be applied to a variety of quantizer design problems, including
but not limited to split VQ quantizer design. The next stage is
to design the VQ codebooks for each sub-vector, as described
in the following subsection.

2) VQ Design: Once the data is divided into sub units and
each unit, i.e., a subset of coefficients, has a known bit-allo-
cation, finding the optimal quantizer becomes a well defined
problem with known solutions. We chose to adopt the classic
LBG approach, presented in [32], where using an iterative
approach we find the best clustering of the sub-vectors to be
coded—assuming known cluster centroids, and then find the
updated centroids for the resulting clusters. In each iteration,
the number of clusters is doubled until we reach the target
number of clusters according to the bit allocation. Thus, for
each sub-vector of each group, we use as a training set all the
associated subvectors, and create the corresponding codebook.
As mentioned above, we limit the size of the largest cluster,
(longest sub-vector), to no more than eight elements, in order
to verify that the collective footprint of the proposed codebooks
do not exceed that of the IBM codebooks.

IV. METROPOLIS-BASED ORDERING OF SEGMENTS

In order to improve recompression performance, we wish to
sort the speech segments in each acoustic leaf in the “best”
order. Our aim is to order the segments so that we maximize

SHOHAM et al.: QUALITY PRESERVING COMPRESSION OF A CTTS ACOUSTIC DATABASE 1063

smoothness of the super-segment for the vector polynomial TD
approach, or, compact as much of the leaf energy as possible into

(the lowest non-DC frequency group) for the 3-D-SADCT-
based approach.

This ordering problem is a classic combinatorial optimiza-
tion problem. The most straightforward method of finding
the optimal order, is to perform an exhaustive search over all
possible orders and select the order resulting in the lowest
“cost,” assuming a known cost function. While this is possible
for the smaller leaves, containing seven segments or less, it
becomes too cumbersome for the larger leaves. Two previously
proposed approaches that can be applied here are the binary
switching algorithm (BSA) originally proposed in [33] and
simulated annealing (SA) proposed in [34], which is performed
using the Metropolis algorithm [35]. In BSA, random order
changes are made and then kept if they cause a decrease in the
obtained cost function. In SA, a cooling schedule is applied.
Again, random order changes are performed and the changes
that cause a reduction in the cost function are kept, but, also
changes that cause the cost function to increase are kept at
a certain probability, which is reduced as the temperature is
lowered. Since our ordering algorithm is applied offline, and we
can “keep” the order that we found to have the lowest cost, it is
sufficient that we “visit” the best order rather than converge to
it. Therefore, the cooling process of the SA is not required here;
however, its pseudo-random behavior, which allows escaping
local minimums, yields better results than the BSA algorithm.
We therefore propose an algorithm that combines the BSA
and SA properties. Algorithm 2 provides the outline of the
proposed algorithm, given an initial order (the original order
in the acoustic leaf), a defined cost function to be minimized
and a “Perturbation Generator” (a unit which enables a random
segment “move”).

Algorithm 2: Metropolis Based Ordering—Algorithm
Outline

1) Initialize: set initial order, and set T to a desired
temperature.

2) Calculate current cost, .
3) Perform a random move, and calculate the new cost

and the difference .
4) If keep the move.
5) If and also keep the

move (i.e., at a probability that depends on the increase
in the cost function and the temperature, keep “bad
moves”).

6) If termination condition is reached: STOP, else: GOTO
2.

The termination condition in our case is simply defined by
reaching the maximum number of iterations allowed (set to
5000, which is about the same number of iterations required
for optimal ordering of leaves with seven segments). The
appropriate temperature was found for the TD and SADCT
setups separately. Note, that the lower the temperature used,
the closer we are to a BSA solution since increases in the
cost function are accepted with very low probability. Using a

high temperature causes the algorithm to be pseudo random,
accepting almost any new ordering and evaluating a large
number of random orders to find the best ordering among them.
For each the proposed algorithms, we performed temperature
tuning by performing ordering with a range of temperatures,
and selecting the temperature that provided the best overall
simulation result, i.e., the lowest cost on average over all leaves.
For the TD algorithm gave the best results. For the
SADCT algorithm provided the lowest overall cost.
This high temperature essentially indicates that we examine a
large number of pseudo-random setups and choose the one with
the lowest cost. In Section V-C [(6), (7)], we will present the
cost functions used for each of the two recompression schemes.

To summarize, we have proposed a segment reordering
algorithm which may be applied prior to the proposed com-
pression approaches. For leaves with seven segments or less
an exhaustive search over all possible orders is performed
to find the order with the lowest cost. For larger leaves, the
proposed Metropolis based algorithm is applied. As we will
show in Section V, the reordering algorithm slightly improved
the obtained speech quality as measured by PESQ.

V. EXPERIMENTAL RESULTS

The proposed algorithms were applied to the spectral model
amplitude parameters of an IBM small footprint CTTS acoustic
leaf database, comprising of 23 263 leaves. The results were
evaluated on ten sample sentences (created using 1661 leaves).
The quality of the reconstructed speech, created using the re-
compressed leaves, was evaluated by calculating the PESQ: Per-
ceptual Evaluation of Speech Quality score ([5]), using the orig-
inal CTTS output of the system described in [1] as a reference
signal. Using this environment, the performance was evaluated
for recompression of the amplitude parameters by a factor of 2,
for all algorithms and setups.

A. Polynomial TD-Based Recompression

In this section, we will present the experimental results for
recompression of a CTTS acoustic database using the proposed
vector polynomial TD Algorithm. We will first address the issue
of selecting a cost function to use in the optimization process,
then describe some variants or different setups of the algorithm
that we examined, followed by the obtained perceptual quality,
as measured by PESQ, for recompression by a factor of x2.

COST FUNCTION SELECTION

In the polynomial TD rate-distortion optimization process de-
scribed in Section II-A, we must constantly evaluate , the
distortion between the speech frame synthesized using the orig-
inal, stored segments, and the speech frame synthesized using
the reconstructed segments in a specific TD setup. However, we
cannot afford to transform back into the speech domain for each
evaluation point, in order to actually measure the obtained dis-
tortion. Therefore, we must find a function that when applied
to the original and reconstructed parameter sets, predicts the
perceptual distortion reliably. We evaluated distortion functions
based on MSE and on log spectral distortion (LSD).

The LSD measure, as defined in [36], is considered a reli-
able estimator of perceived speech quality. It is calculated based
on the spectra of the original and reconstructed signals using

1064 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

Fig. 7. PESQ versus percent of compression for various cost functions all using
full frequency band. Setup A: LSD maximum. Setup B: LSD mean. Setup C:
MSE maximum. Setup D: MSE mean.

a logarithmic frequency scale. Since the original signal spec-
trum is represented by the set of amplitude parameters we are
attempting to compress, we may calculate the LSD directly in
the parameter space, as described in [21, Appendix B]. The pro-
posed measure can be easily computed during the optimization
process thus striving to minimize of the actual LSD rather than
just an Euclidean distance measure between the parameter vec-
tors, in hope of improving overall performance.

We compared the performance when calculating the dis-
tortion measure over the entire frequency range used in the
speech model: [0–11 050] Hz, and when calculating over an
active range of [100–8000] Hz only. Another parameter in the
cost function determination, is whether to take the average
distortion over the frames in the TD segment, or the maximum
distortion. Thus, for each of the MSE and LSD-based cost
functions, we have four possible combinations of either full or
active frequency range and mean or maximum distortion.

The performance of the cost functions was compared by inte-
grating each possible cost function setting into a simplified TD
algorithm, where we simply measured the obtained rates, or ex-
tent of compression, and the quality as indicated by the PESQ
scores of the reconstructed speech for a number of target dis-
tortion values. In addition, in this evaluation phase, the speech
was reconstructed from the obtained TD vectors, without quan-
tization. Results for four selected cases, LSD and MSE using
the maximum and mean over frames and the full frequency
band, are shown in Fig. 7. Using the LSD measure did not im-
prove perceptual performance. This appears to be because the
spectral parameters were already obtained with perceptual con-
siderations in mind, as described in [1]. Using only the active
frequency range slightly improved the quality, on average, but
caused the dependence of quality on the allowed distortion to
be less monotone and, therefore, was not adopted. We found
that using the MSE measure, calculated over the full frequency
range, and limiting the maximal distortion over the TD seg-
ment, (Setup C in Fig. 7), provided the best and most consistent
results.

EVALUATED SETUPS

The proposed algorithm is to be used for small footprint
CTTS synthesizers. Since the host devices often have both CPU
and memory constraints, we examined some reduced com-
plexity setups. A number of different algorithm setups were

TABLE I
PESQ RESULTS FOR THE PROPOSED POLYNOMIAL TD SETUPS—SETUPS

ARE DESCRIBED IN SECTION V-A

examined, and are now described. Most of these setups aim to
minimize complexity, while others also attempt to improve the
obtained speech quality.

1) Full Setup: The full setup of the algorithm refers to the al-
gorithm as described in Section II, i.e., performing optimal seg-
mentation and polynomial order selection. Polynomial orders
are restricted to the range [0,4], to limit the effect of the quanti-
zation error, as described in [21]. Maximum TD segment length
is 16 frames, as longer segments were very rarely selected, and
the longer the allowed segments the higher the algorithm com-
plexity and resulting overhead. The required overhead for each
TD segment in this setup is 7 bits: 3 to represent the selected
polynomial order and 4 to represent the selected TD segment
length.

2) Reduced Polynomial Order Setup: Since the end-devices
performing speech synthesis often have limited CPU power, we
may wish to avoid the high complexity incurred by the polyno-
mial fitting required to reconstruct the data points from the

polynomial samples. Therefore, we evaluated the perfor-
mance of the algorithm when allowing polynomials of orders 0
and 1 only, which require at most linear interpolation for recon-
struction. The optimization procedure is carried out in the same
manner, but it has lower complexity. This approach was also jus-
tified based on the fact that in the full setup, approximately 70%
of the TD segments used polynomial orders of 0 and 1. We will
explain this in further detail when we present the results below.
The overhead in this setup is 5 bits per TD segment: a single bit
for polynomial order and 4 for selected TD segment length.

3) Short TD Segment Setup: We found that in both the full
and reduced polynomial orders setups, most of the TD segments
are quite short. Thus, the overhead of the 4 bits required to repre-
sent the selected TD length is excessive. We therefore evaluated
also a setup which limits the maximum TD segment length to
eight frames, thus reducing the overhead per TD segment by 1
bit. An additional advantage to this is the decreased probability
that in order to reconstruct a specific speech segment we recon-
struct many unneeded frames that belong to a different speech
segment but to the same TD segment. The results for this setup,
shown in Table I, are for the case of reduced polynomial order.

4) Naive Segmentation Setup: In this approach, we do not ex-
tend the TD segments beyond original speech segment bound-
aries. This substantially reduces encoding complexity, and also
reduces decoding complexity since there is no need for decoding

SHOHAM et al.: QUALITY PRESERVING COMPRESSION OF A CTTS ACOUSTIC DATABASE 1065

of additional frames in neighboring speech segments that are
part of the same TD segment. Furthermore, since in this setup
TD segments do not contain frames from more than one speech
segment, the reordering algorithm is not relevant. Long speech
segments are split into TD sub-segments, and the polynomial
order for each TD segment is found s.t. the maximum distortion
along the segment is bounded by , which is found using
the iterative algorithm used in the full setup. We evaluated this
setup with maximum TD segment lengths of 8 and 4. The longer
segments enable more efficient compression, but in order to ob-
tain the target distortion may require polynomials up to order 7,
which in turn may increase quantization error (as analyzed in
[21]) and decoding complexity. The overhead size in this setup
is adaptive in the range 0–3 bits, and depends on the speech
segment length (which is stored as part of the original side in-
formation).

5) Embedded Quantization Setup: In all the setups described
above, the quantization is performed as a final step, after opti-
mization is completed. In the Embedded Quantization setup, we
perform the quantization in-loop, i.e., prior to evaluating the dis-
tortion resulting from each segmentation and polynomial order
selection. The optimization is performed using the overall error,
consisting of both the model error and the quantization error.

RESULTS

The results obtained over the ten test sentences, for the var-
ious polynomial TD algorithm setups, at a recompression factor
of x2, are presented in Table I. These setups were described (and
numbered) in Section V-A. The PESQ scores were calculated
using corresponding speech signals, synthesized according to
[1], as the reference signals. The results provided are using
the proposed metropolis-based ordering algorithm for setups
#1,2,3, and 5, with the current IBM Vector Quantization. For
comparison, we also bring the results obtained by performing
simple downsampling each feature trajectory by a factor of
2, with appropriate pre-filtering, and reconstruction via linear
interpolation. As shown, this simple approach provides much
lower PESQ scores.

Note, that using embedded quantization, i.e., the setup where
the distortion is evaluated using values that have undergone
quantization, caused the PESQ score to decrease, contrary
to expectations. This is due to the fact that the quantization
error of the IBM VQ we used is perceptually shaped, whereas
the proposed minmax optimization is not. Since the quantizer
introduces quite large errors in frequency bands that are per-
ceptually less important, the value of our target distortion is
increased, which may allow for larger distortions in the fre-
quencies that have higher perceptual importance. We therefore
evaluated an optimization that applies a perceptually weighted
MSE, which reduced the degradation in performance caused
by the embedded quantization setup, but still did not improve
overall performance. This is due to the fact that the IBM VQ
error function is heuristic and cannot be accurately represented
analytically, thus optimal corresponding perceptual weights are
not available.

Combining complexity considerations with the results shown
above we can choose the best performing algorithm for var-
ious target applications. While the Naive segmentation algo-
rithm (#4a), with maximum segment length of 8 provides the

Fig. 8. Splitting of 3-D SADCT coefficient vectors into � � � groups and
corresponding bit allocations.

highest PESQ score, it requires use of high order polynomials,
(the highest order in our setup was 6), which adds unacceptable
complexity to the decoding, which must be performed in real
time. The reduced polynomial order setup (#2) and the short
TD segment setup (#3) both provide good quality, with the re-
duced polynomial order resulting in a slightly higher worst case
PESQ score, but also a very slight decrease in the average PESQ
score. The short TD segment setup has the added advantage of
using shorter TD segments, which decreases the probability of
having to reconstruct unneeded frames from neighboring speech
segments that lie in a joint TD segment, when reconstruction of
a single speech segment is required. Assuming the criteria for
choosing the setup to use are the obtained perceptual speech
quality (as measured by PESQ), and the decoding complexity,
which is the case in the IBM TTS application, the reduced poly-
nomial order TD setup, is recommended for recompression of
the acoustic leaves.

B. 3-D SADCT-Based Recompression

BIT ALLOCATIONS

In Section III-C1 we described the two stage quantizer
design. We will now detail the bit allocations obtained at each
stage when applied to our database. The bit allocations obtained
in Stage I, which finds the appropriate bit allocation for the
32 element vector for each pair of values, (where
corresponds to the segment index and corresponds to the
frame index within the segment), are shown in Fig. 8. These
results were obtained using the ordering algorithm described
in Section IV. For Stage II, which allocates bits along the third
dimension of the leaf, which corresponds to the 32 elements
of the parameter vector, we obtain a bit-allocation for each of
the groups found previously, in Stage I. This entire process
results in 5 sets of split locations and bit allocations. Fig. 9
describes for each of the 5 groups, which elements belong to
each of the quantizer subvectors, the subvector lengths and
bit allocations. (Subvectors with more than eight elements are
allowed only if they are represented by 0 bits, i.e., not coded).
As explained in Section III-C1, we then use these allocations to
design corresponding vector quantizers, with the classic LBG
approach.

Results
Using 3-D-SADCT and the quantizers we designed, we com-

pressed the leaves in the database. Then the quality of the re-
constructed speech was evaluated for the ten sample sentences.
The obtained PESQ scores, with the speech synthesized using
[1] as reference, are provided in the last two rows of Table II.

1066 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

Fig. 9. Vector split and bit allocation for each SADCT coefficient group.

These results were obtained for a recompression factor of x2
(43 bits on average per 32 element vectors) and are shown for
both cases—with and without reordering. Note that while the re-
ordering did not really improve the average performance, it did
improve the worst case, which is also reflected in a lower PESQ
standard deviation for the test sentences: 0.14 with reordering
versus 0.23 without.

C. Metropolis Based Ordering

COST FUNCTIONS

In order to apply the Metropolis-based ordering algorithm,
described in Section IV, we must define the corresponding cost
functions for each of the two proposed recompression algo-
rithms.

The cost function used to determine the best segment order
for the polynomial TD compression is calculated over the entire
super-segment, consisting of speech frames. This cost func-
tion attempts to maximize the “super-segment” smoothness by
minimizing the distance to a second order polynomial (smooth
function). The cost is defined as follows:

(6)

where the weights is the value of the th feature
vector element at the th frame and is a second-order poly-
nomial fitted to the trajectory of the th vector element, along
the entire super-segment. The weighting scheme prioritizes the
lower frequency parameters, as they are perceptually more im-
portant.

As described in Section III-C1, for the 3-D SADCT-based
compression the leaf data is split into groups, ,
of varying bit-rates. Our goal is to contain as much of the leaf
energy as possible in , the lowest non-DC frequency group.
Therefore, we define the cost function as

(7)

where are the 3-D SADCT coefficient values. In order
to obtain an initial group splitting to use in this equation, the
joint bit allocation and splitting algorithm is performed once on
the leaves in their original order. Then these initial groups are
used to calculate the cost of each proposed order, as given by

Fig. 10. Ordering performance: Ratio of SADCT coefficients that hold 95%
of the total leaf energy, shown when ordering speech segments according to
their original order, sorted according to length and with the proposed Metropolis
based ordering.

(7), and the splitting and bit allocation is performed again using
the reordered leaves.

REORDERING For Increased ENERGY Compaction
We examined the contribution of the reordering algorithm to

leaf energy compaction, for the SADCT-based recompression.
Fig. 10 demonstrates the improved energy compaction obtained
when using the proposed ordering algorithm for 50 sample
leaves. The figure shows the ratio of coefficients that hold 95%
of the total energy when: 1) Performing SADCT on the leaves
with the segments in their original order (average ratio: 0.341)
2) Performing naive ordering—according to segment length
(average: 0.340) 3) Applying the proposed Metropolis-based
ordering (average: 0.312). As seen here the Metropolis-based
ordering increases energy compactness.

RESULTS

The PESQ results for the two proposed recompression al-
gorithms (TD and 3-D SADCT), with and without reordering,
are shown in Table II. Regarding the contribution of the seg-
ment reordering to overall performance, for the selected TD
setup the reordering had little effect, since the selected TD seg-
ments tend to be very short and rarely extend across speech
segment boundaries. For the “Full” setup however, which al-
lows polynomial of orders up to 4, the average PESQ score in-
creases from 3.55, without reordering, to the aforementioned
3.67 (Table I), with the proposed reordering. For the proposed
3-D SADCT algorithm, while segment reordering does not con-
tribute much for the overall or average performance, it does im-
prove the worst case performance and increases the stability of
the solution across sentences. Since the ordering is performed
offline its slight contribution to overall performance may still
justify its usage.

D. Summary of Results

Table II summarizes the results of the proposed algorithms for
x2 recompression compared to naive downsampling (using ap-

SHOHAM et al.: QUALITY PRESERVING COMPRESSION OF A CTTS ACOUSTIC DATABASE 1067

TABLE II
PESQ PERFORMANCE OF PROPOSED ALGORITHMS, WITH AND WITHOUT

PROPOSED SEGMENT REORDERING VERSUS NAIVE DOWNSAMPLING,
EVALUATED FOR TEN TEST SENTENCES

propriate prefiltering and linear interpolation). As seen there, the
3-D SADCT obtains the highest PESQ score. As both the ref-
erence and test signals consist of synthesized speech, no degra-
dation was perceived in informal listening tests for the obtained
average PESQ scores of 3.7–3.8.

Regarding added decoding complexity of the proposed solu-
tions: for the reduced polynomial order TD approaches, only
linear interpolation is required which has negligible complexity
compared to the speech synthesis process. The setups using
higher order polynomials may however not be suitable for end
devices with limited resources. For the 3-D SADCT approach,
complexity is slightly higher, but, assuming usage of highly op-
timized DCT implementations which exist for most embedded
devices, the complexity overhead is still very low. For compar-
ison, the low complexity speech synthesis described in [1], re-
quires applying a 512-tap fast Fourier transform (FFT) as part
of the synthesis process of each speech frame, which has com-
plexity of operations. The inverse
3-D SADCT on the other hand, for a leaf with M segments, of
average length N frames, requires M*N IDCTs of length 32,
N*32 IDCTs of length M and M*32 IDCTs of length . For the
median values in our database, and , this results
in a total of O(1648) operations, in addition to inverse quan-
tization. Thus, reconstructing the parameters of all the speech
frames in the leaf, generally has lower complexity than the FFT
part of the speech synthesis of a single speech frame. The en-
coding complexity of the proposed algorithms is significantly
higher than the decoding complexity, and includes iterative pro-
cesses. However, for CTTS systems this in not of particular in-
terest, as the effort invested in the initial creation and compres-
sion of such a database is very high and is performed only once,
offline.

VI. CONCLUSION

Faced with a high footprint acoustic database for a concate-
native text-to-speech synthesizer, we addressed the problem
of reducing its footprint without compromising the perceptual
quality of the synthesized speech.

We presented two algorithmic approaches for the recompres-
sion. The first is a vector polynomial TD approach, which we ap-
plied to the super-segments created by concatenating the speech
segments in each acoustic leaf. For each leaf, given a target dis-
tortion value, we perform optimal segmentation and polynomial
order selection. Although each parameter is modeled by a sep-
arate trajectory, we enforce the same polynomial model for all

parameters in each TD segment, thus reverting to a form of vec-
torial TD that is well suited for short segments of discontin-
uous speech data. As the polynomials are represented by their
samples, we perform the sampling jointly along the vectors and
hence are able to use the systems original vector coding tools.
The second algorithmic approach is based on 3-D SADCT. We
reviewed the underlying theory and showed that good energy
compaction can be obtained for our data using this approach.
We addressed the issue of coefficient quantization and presented
a methodical bit allocation and splitting approach, used along
with LBG, to obtain a split-VQ algorithm for the coefficient
quantization. We also presented an accompanying segment or-
dering algorithm. Although it only had a small effect on the
overall performance of the two compression algorithms, it may
be of interest in other applications that require offline ordering.

We have shown that by applying both proposed algorithms,
Polynomial TD and 3-D SADCT, to a specific, small footprint
CTTS database, we can provide perceptually equivalent speech
with a x2 compression ratio. The SADCT-based approach pro-
vides higher PESQ scores than the polynomial TD-based ap-
proach. However, it cannot be easily adjusted to any desired re-
compression ratio, as new quantizers must be designed for each
target ratio as opposed to the polynomial TD-based approach
which can provide any desired compression ratio in a fully au-
tomated process.

In this paper, the proposed algorithms were applied to a spe-
cific acoustic leaf database for the sake of performance evalu-
ation; however, these algorithms have has a much wider scope,
and may be used for compression of any CTTS database or any
other database consisting of 3-D “buckets” of values that contain
some extent of redundancy, such as sign language databases,
databases used for image classification and others.

ACKNOWLEDGMENT

The authors would like to thank R. Hoory, head of the Speech
Technologies Group in IBM-HRL, Z. Kons, and the entire group
for their cooperation and ongoing support. They would also like
to thank the devoted SIPL staff: N. Peleg, Y. Moshe, Z. Avni,
and A. Rosen for creating the productive and pleasant environ-
ment that enabled and encouraged this research.

REFERENCES

[1] D. Chazan, R. Hoory, Z. Kons, A. Sagi, S. Shechtman, and A. Sorin,
“Small footprint concatenative text-to-speech synthesis system using
complex spectral envelope modeling,” in Proc. Eurospeech, Lisbon,
Portugal, Sep. 2005.

[2] R. E. Donovan, A. Ittycheriah, M. Franz, B. Ramabhadran, E. Eide,
M. Viswanathan, R. Bakis, W. Hamza, M. Picheny, P. Gleason, T.
Rutherfoord, P. Cox, D. Green, E. Janke, S. Revelinand, C. Waastand,
B. Zeller, C. Guenther, and J. Kunzmann, “Current status of the IBM
trainable speech synthesis system,” in Proc. 4th ISCA Tutorial Research
Workshop Speech Synth., Aug. 2001.

[3] A. B. Kain and J. P. H. van Santen, “Unit-selection text-to-speech syn-
thesis using an asynchronous interpolation model,” in Proc. 6th ISCA
Workshop Speech Synth., Bonn, Germany, Aug. 2007.

[4] T. Shoham, D. Malah, and S. Shechtman, “Footprint reduction of con-
catenative text-to-speech synthesizers using polynomial temporal de-
composition,” in Proc. ICSSCP’10, Mar. 2010, pp. 1–5.

[5] “Wideband extension to Recommendation P.862 for the assessment of
wideband telephone networks and speech codecs,” ITU-T Rec. P.862.2,
Nov. 2005.

1068 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

[6] B. S. Atal, “Efficient coding of LPC parameters by temporal decompo-
sition,” in Proc. ICASSP, Boston, MA, Apr. 1983, vol. 1, pp. 81–84.

[7] C. Athaudage, A. Bradley, and M. Lech, “Model-based speech signal
coding using optimized temporal decomposition for storage and
broadcasting applications,” EURASIP J. Appl. Signal Process., pp.
1016–1026, Oct. 2003.

[8] F. Bimbot, G. Chollet, P. Deleglise, and C. Montacie, “Temporal
decomposition and acoustic-phonetic decoding of speech,” in Proc.
ICASSP, New York, Apr. 1988, vol. 1, pp. 445–448.

[9] Y. M. Cheng and D. O’Shaughnessy, “On 450–600 b/s natural
sounding speech coding,” IEEE Trans. Speech Audio Process., vol. 1,
no. 2, pp. 207–220, Apr. 1993.

[10] G. Ahlbom, F. Bimbot, and G. Chollet, “Modeling spectral speech tran-
sitions using temporal decomposition techniques,” in Proc. ICASSP,
Apr. 1987, vol. 12, pp. 13–16.

[11] S. Shechtman and D. Malah, “Efficient sub-optimal temporal decom-
position with dynamic weighting of speech signals for coding applica-
tions,” in Proc. Interspeech’04-ICSLP, Oct. 2004.

[12] P. C. Nguyen, M. Akagi, and B. P. Nguyen, “Limited error based event
localizing temporal decomposition and its application to variable-rate
speech coding,” Speech Commun., vol. 49, no. 4, pp. 292–304, Apr.
2007.

[13] L. Girin, M. Firouzmand, and S. Marchand, “Perceptual long-term vari-
able-rate sinusoidal modeling of speech,” IEEE Trans. Audio Speech
Lang. Process., vol. 15, no. 3, pp. 851–861, Mar. 2007.

[14] M. Firouzmand and L. Girin, “Long-term flexible 2-D cepstral mod-
eling of speech spectral amplitudes,” in Proc. ICASSP, Las Vegas, NV,
Mar. 2008, pp. 3937–3940.

[15] L. Girin, “Adaptive long-term coding of LSF parameters trajectories
for large-delay/very- to ultra-low bit-rate speech coding,” EURASIP J.
Audio, Speech, Music Process., vol. 2010, 2010, Article ID 597039.

[16] S. Dusan, J. L. Flanagan, A. Karve, and M. Balaraman, “Speech coding
using trajectory compression and multiple sensors,” in Proc. Int. Conf.
Spoken Lang. Process., Jeju Island, Korea, Oct. 2004, pp. 1993–1996.

[17] S. Dusan, J. L. Flanagan, A. Karve, and M. Balaraman, “Speech com-
pression by polynomial approximation,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 15, no. 2, pp. 387–395, Feb. 2007.

[18] R. Nygaard and D. Haugland, “Compressing ECG signals by piecewise
polynomial approximation,” in Proc. ICASSP, Seattle, WA, May 1998,
vol. 3, pp. 1809–1812.

[19] R. Nygaard, G. Melnikov, and A. K. Katsaggelos, “A rate distortion
optimal ecg coding algorithm,” IEEE Trans. Biomed. Eng., vol. 48, no.
1, pp. 28–40, Jan. 2001.

[20] G. M. Schuster and A. K. Katsaggelos, Rate-Distortion Based Video
Compression. Dordrecht, The Netherlands: Kluwer, 1997.

[21] T. Shoham, “Quality-preserving footprint-reduction of concate-
native text-to-speech synthesizers” M.Sc. thesis, The Tech-
nion, Haifa, Israel, 2010 [Online]. Available: http://sipl.tech-
nion.ac.il/siglib/FP/Tamar-Shoham-thesisall.pdf, Faculty of EE,
Technion

[22] P. Prandoni and M. Vetterli, “R/D optimal linear prediction,” IEEE
Trans. Speech Audio Process., vol. 8, no. 6, pp. 646–655, Nov. 2000.

[23] P. Prandoni and M. Vetterli, “Approximation and compression of piece-
wise smooth functions,” Philosophical Trans.: Math., Physical, Eng.
Sci., vol. 357, no. 1760, pp. 2573–2591, Sep. 1999.

[24] N. Farvardin and R. Laroia, “Efficient encoding of speech LSP pa-
rameters using the discrete cosine transformation,” in Proc. ICASSP,
Glasgow, U.K., May 1989, vol. 1, pp. 168–171.

[25] D. J. Mudugamuwa and A. B. Bradley, “Optimal transform for seg-
mented parametric speech coding,” in Proc. ICASSP, Seattle, WA, May
1998, vol. 1, pp. 53–56.

[26] T. Sikora and B. Makai, “Shape-Adaptve DCT for generic coding of
video,” IEEE Trans. Circuits, Syst., Video Technol., vol. 5, no. 1, pp.
59–62, Feb. 1995.

[27] D. Markman and D. Malah, “Hyperspectral image coding using 3-D
transforms,” in Proc. Int. Conf. Image Process. (ICIP), Thessaloniki,
Greece, Oct. 2001, vol. 1, pp. 114–117.

[28] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary
set of quantizers,” IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-36, no. 9, pp. 1445–1453, Sep. 1988.

[29] S. Chatterjeet and T. V. Sreenivas, “Optimum transform domain split
VQ,” IEEE Signal Process. Lett., vol. 15, pp. 285–288, 2008.

[30] C. S. Xydeas and C. Papanastasiou, “Split matrix quantization of LPC
parameters,” IEEE Trans. Speech Audio Process., vol. 7, no. 2, pp.
113–125, Mar. 1999.

[31] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Boston, MA: Kluwer, 1991.

[32] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84–95, Jan.
1980.

[33] K. Zeger and A. Gersho, “Pseudo-gray coding,” IEEE Trans. Commun.,
vol. 38, no. 12, pp. 2147–2158, Dec. 1990.

[34] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, New Series, vol. 220, no. 4598, pp. 671–680,
May 1983.

[35] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
“Equations of state calculations by fast computing machines,” J. Chem.
Phys., vol. 21, pp. 1087–1092, Jun. 1953.

[36] , W. B. Kleijn and K. K. Paliwal, Eds., Speech Coding and Synthesis.
New York: Elsevier Science, 1995, ch. 12.

Tamar Shoham received the B.Sc. degree from Tel
Aviv University, Tel Aviv, Israel, in 1998 and the
M.Sc. degree (cum laude) from the Technion–Israel
Institute of Technology, Haifa, in 2010, both in
electrical engineering.

From 1997 to 2005, she was part of the DSP Algo-
rithms team in Comverse. From 2006 to 2009, she
was a Research Assistant in the Signal and Image
Processing Laboratory (SIPL), the Technion. Since
2009, she has been a Senior DSP Algorithms Engi-
neer with ICVT, Ltd., Tel-Aviv, developing perceptu-

ally lossless image and video compression solutions. Her areas of interest cover
a range of signal processing algorithms with emphasis on the art of compres-
sion.

David Malah (S’67–M’71–SM’84–F’87–LF’09) re-
ceived the B.Sc. and M.Sc. degrees from the Tech-
nion–Israel Institute of Technology, Haifa, in 1964
and 1967, respectively, and the Ph.D. degree from the
University of Minnesota, Minneapolis, in 1971, all in
electrical engineering.

Following two years on the staff of the Elec-
trical Engineering Department, University of New
Brunswick, Fredericton, NB, Canada, he joined
in 1972 the Technion, where he is an Elron-Elbit
Professor of Electrical Engineering. From 1979 to

2001, he spent about 6 years, cumulatively, of sabbaticals and summer leaves
at AT&T Bell Laboratories, Murray Hill, NJ, and AT&T Labs, Florham Park,
NJ, conducting research in the areas of speech and image communication and
the summer of 2004 at the Georgia Centers for Advanced Telecommunications
Technology—GCATT, working in the area of video processing. Since 1975, he
has been the academic head of the Signal and Image Processing Laboratory
(SIPL), the Technion, which is active in image/video and speech/audio pro-
cessing research and education. From 2006 to 2010, he served as the Director
of the Center for Communication and Information Technologies—CCIT, in the
Electrical Engineering Department, Technion. His main research interests are
in image, video, speech, and audio coding; speech and image enhancement;
text-to-speech synthesis; hyperspectral image analysis; data embedding in
signals; and digital signal processing techniques.

Prof. Malah is on the Editorial Board of the Journal of Visual Communication
and Image Representation, since 1999, and as of 2010, he is on the Senior Edito-
rial Board of the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING.
He is a recipient of the 2007 International IBM Faculty Award, and the 2011
Outstanding Achievement Award from the University of Minnesota.

Slava Shechtman received the B.Sc. degree and
M.Sc. degree (cum laude) in electric engineering
from the Technion–Israel Institute of Technology,
Haifa, in 1999 and 2004, respectively. His M.Sc.
thesis explored speech modeling and very low bit
rate speech coding.

He joined the Speech Technology Group,
IBM Haifa Research Labs, in 2004. His major
areas of interest are speech modeling, syn-
thesis, coding, and transformation. Since 2010,
he has been leading speech modeling for the TTS

research project with IBM.

