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Abstract 

Vector-Quantization (VQ) is an effective and widely implemented method for low-bit-rate 
communication of speech and image signals. A common assumption in the design of VQ-based 
communication systems is that the compressed digital information is transmitted through a perfect 
channel. Under this assumption, quantization distortion is the only factor in output signal fidelity. 
Moreover, the assignment of channel symbols to the VQ Reconstruction Vectors is of no 
importance. However, under physical channels, errors may be present, degrading overall system 
performance. In this case, the effect of channel errors on the VQ system performance depends on 
the index assignment of the Reconstruction Vectors. For a VQ with NReconstruction Vectors there 
are N! possible assignments. Hence, even for relatively small values of N, an exhaustive search 
over all possible assignments is practically impossible. In this paper, upper and lower bounds on 
the performance of VQ systems under channel errors over all possible assignments are presented 
using Linear Programming arguments. These bounds may give the system designer more insight 
about the gain that could be achieved by improving the index assignment. In numerical examples, 
the bounds are compared with the performance obtained by using a set of random assignments, as 
well as with an index assignment obtained by the well-known index switching algorithm. 

1. Introduction 

Vector Quantization (VQ) is a method for mapping signals into digital sequences 
[I]. A typical VQ-based communication system is shown in Fig. 1. 

vQ . LA~j IT I :('l~;(' I IT-I ~~ VQ U~i~. .-l, "od ' ~, Channel -- ~ D -ndpr ~ Destination, 
1',n~~~ ~~ __ ._~ 

Fig. I - Vector Quantization based Communication system 

In most Signal Processing applications a discrete-time Source emits signal 
samples over an infinite or a large finite alphabet. These samples should be sent to 
the Destination with the highest possible fidelity. The VQ Encoder translates 
vectors of source samples into Channel digital sequences. The task of the VQ 
decoder is to reconstruct source samples from this digital information. Since the 
analog information cannot be perfectly represented by the digital information some 
Quantization Distortion must be tolerated. 

In each channel transmission the VQ encodes a K-dimensional vector of source 
samples - !( t) into a Reconstruction Vector index y( t), where the discrete variable 

t represents the time instant or a channel-use counter. The index is taken from a 
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finite alphabet, y(t) E {O, 1, ... , N - I}, where N is the number of Reconstruction 
vectors (hence the number of possible channel symbols). 

The Index Assignment is represented in Fig. 1 by a permutation operator: 

n:y(t) E{O, 1, ... ,N -I} ~ z(t) E{O, I, ... ,N -I} (1) 

where a total of N1 possible permutations exist. For just 4-bits quantization there are 
16! ::::; 2 .1013 possible permutations. Examination of all possible permutations is 
therefore impractical. The channel index z(t) is sent through the channel. 

For Memoryless Channels, The channel output z(t) is a random mapping of its 
input z(t), characterized by the Channel Probability Matrix Q, defined by: 

(2) 

Throughout we shall assume that Q is symmetric (i.e., Symmetric Memoryless 

Channels). 
For the special case of the Binary-Symmetric-Channel (BSC): 

(3) 

where L is the number of bits (N = 2L ), q is the Bit-Error-Rate (BER) and H(i,j) is 
the Hamming Distance between the binary representations of i and j. 

At the receiver, after inverse-permutation, the VQ Decoder converts the channel 
output symbols into one of N possible Reconstruction Vectors. It is desired that 
the Decoder output g(t) be "close" to the original input. The term "close" will be 
defined by a distortion measure between the input and the output of the VQ system 
d(!, g). 

Knowledge of the source statistics p(!.) or a representing Training Sequence is 
assumed. The perfomance of the overall system is measured in terms of the average 
distortion E[ d(! , g) l. 

In "classic" discussions of VQ applications, the channel is assumed to be 
noiseless (Q = I, where I is the unity matrix), [1], so that no errors occur during 
transmission and y( t) = y( t) for every t. This assumption is based upon using a 
channel encoder-decoder pair to correct channel errors, causing the distortion due 
to channel-errors to be negligible. The permutation n has no effect in this case. 

Upon knowledge of the source statistics, Lloyd's algorithm [1] may be used to 
design the VQ In practice, a training sequence is used and the LBG algorithm [1] is 
implemented. Both methods are iterative and alternately apply the Nearest-Neighbor 
Condition and the Centroid condition. 

In some applications, channel-coding is not utilized due to complexity or Bit­
Rate constraints. In case of a channel error event, a wrong Reconstruction Vector is 
selected at the decoder. The distortion due to channel errors is significant and 
affects the design of the VQ system [2-12]. 
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The Vector Quantization system consists of a partition of the signal space n of 
all possible input vectors - !. This space is partitioned into N nonoverlapping 
regions: 

uR, = n; R, nRJ = 0 
I 

(4) 

Each partition region R, has a corresponding Reconstruction (Representation) 

Vector - <P .. 
-I 

The encoder accumulates a K-dimensional vector of source samples !. The 
symbol y( t ) = i is emitted if ! E R, and the corresponding channel symbol, 
z( t) = n( i), is transmitted through the channel. The channel output is a random 
mapping of this tranmission. Upon receiving the channel symbol 2(t) = j the 

decoder emits the Reconstruction Vector - <P -1( .. 
-[] J) 

The overall distortion of the VQ-based communication system is: 

D = E[d(!. !)] = II {1t. Q.1tT }ij f d(!. t)· p(!)·d! 
1'"-0 ;=0 R; 

(5) 

In (5) the permutation is represented by a permutation matrix - 1t, whose entries are 
O's and l's and the sum of each of its rows and columns is 1. For the perfect 
channel, Q = I, the permutation matrix 1t is of no importance (1t .1tT = I), and the 
only factor of the system performance is the Quantization Distortion: 

Dq = E[ d(! . !) ]IQ=I = If d(! . ~j) . p(!). d! 
1:::0 Rj 

(6) 

For the region R" all vectors ! E R, should be represented by ~I' Yet due to 

channel errors, other reconstruction vectors may appear at the destination. The 
probability of receving the channels index corresponding to 4>. given the index 

-J 

corresponding to 4> was transmitted is {1t. Q. 1t T L 
_I y 

The Channel Distortion is defined by the average distance between the 
reconstructed vector and the one that would have been reconstructed with no 
channel errors: 

where PI is the probability that an input vector ! belongs to the i-th partition region 

R,: 
PI = J p(!)·d! 

R, (8) 
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the diagonal matrix P contains these probabilities P = diag{po. Pl.···. PN -I}' and 

the entries of the matrix D are the distances among all Reconstruction Vectors: 

D'l = d( <l> • <l> ) It is shown in [8],[9] that for the Euclidean distance measure, and 
-I _] 

Centroid quantizers the overall distortion is the sum of the quantization and channel 
distortions: D = Dq + Dc' 

In the literature two main approaches are proposed to improve the performance 
of Vector Quantizers under channel errors. The first method allows modification of 
the partition regions and their corresponding codevectors. In the presence of 
channel errors, and given the transmitted symbol, the received symbol is a random 
variable. It is suggested to redesign the VQ by modifiying the distortion measure to 
take all possible output vectors into consideration. This modification results in a 
Weighted-Nearest-Neighbor and Weighted-Centroid conditions [7-9]. These 
conditions are specific to every channel condition. Hence, a VQ designed for a noisy 
channel should apply a different partition and a different set of codevectors for each 
possible BER. The main drawbacks of this approach are the large memory 
consumption and extensive design effort. 

The second approach is trying to reduce channel distortion by using a better 
index assignment. Several suboptimal methods are suggested in the literature. In [7-
10] an iterative Index Switching algorithm is proposed. After selecting an initial 
assignment, the algorithm searchs for a better assignment by exchanging indices of 
codevectors, and keeping the new assignment if it performs better than its 
predecessor. This algorithm can only offer a local minima. A more sophisticated 
algorithm is examined in [7], where Simulated Anealing (SA) is used to search for 
an optimal index assingnment. The method of SA involves some ad-hoc arguments 
to define system "temperature" and "cooling" procedures. Moreover, the method of 
SA has a very slow convergence rate, and cannot assure global optimum during a 
limited design period. 

For the special case of a Uniform Scalar Quantizer with quantization step h. 

rp,=(i-N/2)·h d(<I>,,<I>J=h"(i-j)", and a Unifonn Source, 

P, = 1/ N, i = 0,1, ... , N -1, it is shown in [2],[5],[6] that the Natural Binary Code 
Assignment, corresponding here to 1t = I, is the optimal assignment. 

The remainder of the paper is organized as follows. In section 2, lower and upper 
bounds on the performance of VQ system over all possible Index Assignments are 
presented. In section 3 numerical results are shown. Conclusions are given in 
Section 4. 

2. Performance Bounds 

In this section we introduce lower and upper bounds on the channel distortion, as 
defined in (7), under Symmetric Memoryless Channels, over all possible assignments 
(permutation matrices - 1t). The bounding technique is based on eigenvalues and 
Linear Programming arguments. Instead of optimizing over the ( discrete) family of 



104 

matrices covering all possible assignments 1tQ1tT, we optuDlze over a wider 
(continuous) family. A detailed mathematical analysis may be found in [3]. 
Using the symmetry property of the Channel Matrix, Q, we combine the matrices D 
and P into a single symmetric matrix D = DP + pTDT. The channel distortion is 
given then by: 

(9) 

Recalling that Q represents probabilities, the sum of any of its rows is one, so the 
vector ! = [1 1 . . . 1 r is an eigenvector of Q since Q.! = !. 

A fundamental step in the bounding technique is that the matrix D is replaced by 
another symmetric matrix D, also having 1 as an eigenvector. This replacement 
changes Dc by a known additive constant. This goal is achieved by adding "Cross 

Structured" matrices, as we define shortly, to the matrix D. 
We define a "Column Structured" matrix as: 

c= , 

o 
o 

o 

o 
o 

o 

o 
o 

o 

o 
o 

o 
i i - th column (10) 

Using the property Q·C, = Ci , it is shown in [3] that adding "Cross Structured" 

matrices a( C, + C;), where a is a scalar, changes the r.h.s. of (9) just by the 

addition of the scalar a, for any permutation matrix 1t: 

(11 ) 

In order to achieve the desired property D·! = co o!, for some co 0' all rows of D 
must have the same sum of entries. Let us examine the effect of adding a "Cross 

Structured" matrix a( Ci + C~) to a general matrix of size N x N. The sum of all 

rows except for the i-th row is increased by a, while the sum of the i-th row is 
increased by (N + 1)· a. 

An algorithm for obtaining D having the desired property is shown in Table 1. 
Throughout the algorithm, a variable S is needed to store the sum of all "a" 
constants added to the r.h.s. of (9). By adding at most N-l "Cross Structured" 
matrices we get a symmetric matrix where all rows have the same sum of elements, 
resulting in the matrix D, with the desired property D· ! = co o!. We shall refer to D 
as the Weighted Distances Matrix. The channel distortion can now be written as: 



Initialization: a. Set the matrix: D ~ D = DP + pTDT. 
b. Clear the sum of additive constants: S ~ o. 

Step 1: Calculate the sum of all rows. 

Denote the sum of the i-th row by Sz = I (D) . 
}=o '} 

Step 2: Search all rows for the maximal sum of elements. 
Assume that the row with the maximal sum is labeled k. 

Step 3: For each row i::t k: 

a. Add the "Cross Structured" matrix D ~ D + ~ (Sk - Sz)( C, + C~). 
1 

b. Update S ~ S+-(Sk -SJ 
N 

- -
Table I - An algorithm for obtaining D having the property D . ! = (Oo!, 

without affecting the optimization problem 
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(12) 

Note that now both the channel matrix Q and the Weighted Distances Matrix D 

are symmetric, have nonnegative entries, and have ! = [1 1 . . . 1 r as an 

eigenvector. All eigenvalues of both matrices are real. Next, we use the following 
Theorem adopted from [14 Section 15.7]. 

Theorem: The Perron-Frobenius eigenvalue of a nonnegative-entries symmetric 
matrix M with the property M·! = P! is p. This eigenvalue is positive and is the 
largest in absolute value. 

Corollary: The eigenvalue 1 of the matrix Q and the eigenvalue (00 > 0 of the 

matrix D, both corresponding to the eigenvector 1., are the largest in absolute value 

for each matrix. 

Next, we perform a unitary diagonalization on both matrices: 

Q = V· A . VT v· VT = I 
D=w·n·wT W·WT=I (13) 

Without loss of generality, we arrange the eigenvalues (and their corresponding 
eigenvectors) in A and n to be in decreasing order. Substituting (13) into (12) 
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Dc = ±trace{ VAVT 1tTwnwT 1t} - S = ±trace{ AVT 1tTwnwT 1tV} - S = 

I I N-IN-I 

= - trace { A'I'O'l'T } - S = - L L A,O) J'I';: - S 
2 2 ,~O FO 

(14) 

where we define A.. = A,; , 0), = 0,; , i = 0, I, ... , N - I and the matrix 'I' is defined 

as 'I' = VT 1tTW . The matrix 'I' is also unitary since: 'I''I'T = VT 1tTWWT 1tV = I. 

Since the first column of both V and W is ~o = ~o = h-L and the remaining 

columns are orthogonal to the vector 1, the structure of 'I' = VT 1tTW is: 

0 ... 0 

0 
'1'= 

? 

0 (15) 

where the question mark represents unknown entries. 
In order to obtain upper and lower bounds over aJl possible Index Assignments, 

we relax the constraint that the matrix 'I' equals to VT 1tTW for some permutation 
matrix - 1t (a discrete set of possible 'I' matrices). Instead, we only require the 
property that the sum of squares of the elements in each row and column of a 
unitary matrix ('I' in this case) is equal to 1 (a wider, continuous set of possible 'I' 
matrices), and state the foJlowing optimization problem: 

N-I 

s.t. L'I',;=1 J=I,2, ... ,N-l 
;::::1 

N-I 

L '1',; = I i = 1, 2, ... , N - I (16) 
pi 

Note that the first row and the first column were omitted from the optimization 
problem. The problem in (16) is a standard Assignment problem in Operations 
Research, e.g., optimaly assigning N workers to N machines. Using Linear 
Programming arguments, it is shown in [15] that an optimal solution for the 
Assignment problem is a permutation matrix 'Popt that has a single 1 in each row and 

column, while the remaining elements of the matrix are zero. Nevertheless, 'PoPt 

does not necessarily correspond to a legal Index Assignment matrix 1t. 
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N-I N-I 

Observing the target function in (16) L \ L ro j'l': ' we see that the permutation 
i=1 j=1 

matrix 'I'oP/ does a one-to-one (permutation) matching between the eigenvalues \ 

and ro i i = 1,2, ... , N - I , while always matching Ao and ro 0 . 

Recalling that both Ai and ro i were arranged in decreasing order, it is shown in [3] 
that the highest (lowest) possible value is obtained by matching the eigenvalues Ai 
and ro i i = 1. 2, ... , N - I in the same (reversed) order. The minimum and maximum 
values of the optimization problem are: 

N-I N-I 

Minimum value: L \ . ro N-, Maximum value: L A, . ro i 
i=1 ;=1 

Corresponding to: Corresponding to: 

I 0 0 0 0 0 0 
0 0 0 0 

'I'm .. = 'I'mar = 
0 0 
0 0 0 0 (17) 

and the bounds on Channel Distortion over all possible Index Assignments are: 

(18) 

In conclusion, in order to find the desired bounds one should perform the 
following steps: 
I. Calculate the Weighted Distances Matrix, i>, and the sum of added scalars S, 

using the algorithm stated in Table 1. 
2. Calculate the eigenvalues of the Channel Matrix Q (A" i=O,I, ... ,N-I), 

and of the Weighted Distances Matrix i> (ro i' i = 0, I, ... , N -I). For the 
Binary-Symmetric-Channel, Ai are given in [2], [5]. 

3. Calculate the upper and lower bounds using (18). 

For the special case of an L -bit (N = 2 L levels) Uniform Scalar Quantizer and a 
Uniform Source operating under the Binary Symmetric Channel with Bit-Error-Rate 
q, these bounds turn out to be [3]: 

--..:2(_N_-_I)(,---N_+_I) 2q '5, D '5, 2(N -I)(N + 1)[I_(1_2q)L] 
3N2 c 3N2 (19) 

The lower bound coincides with the performance of the Natural Binary Code, which 
is the optimal Assignment for this case, as shown in [2], [5], [6]. Note that for small 
Bit Error Rate values, the ratio between the upper and lower bounds in (19) is equal 
to the number of bits L . 
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3. Numerical Examples 

In this section numerical examples of the performance bounds are presented. Due to 
the huge number of possible assignments, the lower and upper bounds are compared 
with the best and worst of lO,OOO random assignments. In some cases the 
performance due to an index assignment obtained by the Index-Switching algorithm 
[9] is also shown. Further examples may be found in [3]. 

Fig. 2 - Upper and lower bounds over all possible index assignments on the Channel-Distortion of 
a 4-bit Uniform Scalar Quantizer and a uniform source under the BSC. The bounds are compared 
with the performance of the best and worst assignments of 10,000 randomly picked assignments. 

The lower bound coincides with the performance of the optimal assignment (Natural Binary Code) 

Example 1: For a 4-bit uniform scalar quantizer, a uniform source and a BSC, 
bounds were presented in (19). The resulting bounds and the simulation results are 
shown in Fig. 2. The upper and lower bounds are about O.SdB away from the best 
and worst assignments found in the random assignment simulation. As mentioned, 
The distortion due to the Natural Binary Code (NBC) coincides with the lower 
bound. The ratio between the upper and lower bound is approximately the number 
of bits L=4, that is 6dB. 

Example 2: Consider the 4-bit uniform scalar quantizer, and the uniform source of 
Example 1. The digital information is assumed to be sent through the BSC utilizing 
a (7,4) Hamming Error Correcting Code [16]. The channel transition matrix Q is 
symmetric, thus enabling us to use the proposed bounds. The eigenvalues and 
eigenvectors of Q are different from the BSC case. The resulting bounds and the 

simulation results are shown in Fig. 3. 
It can be seen that the slope of the graphs is 20dB/ Decade, i.e., reducing the Bit 
Error Rate by a factor of 10, results in a 20dB lower distortion. The channel 
distortion is approximately proportional to the square of the Bit Error Rate. The 
upper bound is about 0.6dB away from the worst random assignment, while the 
lower bound is about O.ldB from the best random assignment. It is shown in [3], 
that the NBC is also optimal for this case. The ratio between the upper and lower 
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bound is approximately 4.SdB. The addition of the channel protection brought the 
bounds closer together. 

Dc(dB) 
-1Or-1--~ 

-5~O -3 
BER 

Fig. 3 - Upper and lower bounds over all possible index assignments on the Channel-Distortion of 
a 4-bit Unifonn Scalar Quantizer and a unifonn source under the BSC with (7,4) Hamming code. 
The bounds are compared with the perfonnance of the best and worst assignments of 10,000 
randomly picked assignments. The Natural Binary Code coincide with the lower bound. 

Example 3: Similar to the first example, we consider now a 4-bit PDF-Optimized 
Uniform Scalar Quantizer, a Gaussian source and a BSC The resulting bounds and 
the simulation results are shown in Fig. 4. 

Dc (dB) 
-5 ,----~r=====,---,----------,---~.,--, 

~HWorst Assijl,llIllent· I 
_.:::::::----- . I 

-IOf_~ . 
I __ ~ • •. Best Assigrunent • 

-15~;::::::--- . ...•. ~ ....... _- -.. -. :.. Index Switching· 
I ~. : ____ ~ 

-2°l~~~~~1 
-25: //::C:.. . r'·-_-Ra-nd-o'--:m-I'-n-de-x-As-sl'-·gnrn-e-n-'t , 

-30~-:/~- ILower Bound I J 
10 -3 lO-c BER 

Fig. 4 - Upper and lower bounds over all possible index assignments on the Charmel-Distortion of 
a 4 bit PDF-Optimized Unifonn Scalar Quantizer and a Gaussian source under the BSe. 

The bounds are compared with the perfonnance of the best and worst assignments of 10,000 
randomly picked assignments. 

The upper bound is about O.6dB away from the worst assignment found in the 
random assignment simulation. The lower bound is about SdB lower than the 
distortion due to the assignment obtained by the index switching algorithm. As 
mentioned earlier there are about 2· lOll possible assignments in this example. Since 
it is not practical to find the best assignment by exhaustive search ,it is not clear at 
this point how tight the proposed lower bound is. It could well be that the relatively 
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large gap between the lower bound al)d the performance of the best assignment 
found in simulations so far, is due to an insuffiecint number of examined 
assignments (10,000). This issue is presently under investigation. 

-lof 
i 

-20 

-30 

-5~0 -3 
BER 

Fig. 5 - Upper and lower bounds over all possible index assignments on the Channel-Distortion of 
a 4-bit PDF optimized Uniform Scalar Quantizer and a Gaussian source under the Binary 

Symmetric Channel with (7,4) Hamming code. The bounds are compared with the perforemance 
of the best and worst assignments of 10,000 randomly picked assignments. 

Example 4: Consider the source and quantizer of the previous example. The 
digital information is sent through a BSC utilizing this time a (7,4) Hamming Error 
Correcting Code, as in example 2. The resulting bounds and the simulation results 
are shown in Fig. 5. The upper and lower bounds are about 0. 8dB from the best and 
worst assignment found in the random assignement simulation. As in the case of a 
uniform source, the addition of channel protection brought the bounds closer 
together. 

As mentioned earlier, further examples may be found in [3]. For a 3-bit PDF­
optimized Uniform scalar quantizer, a Gaussian source and the BSe we perform full 
search over all 8! = 40,320 possible assignments and the bound appear to be tight. 
Bounds and simulation result for an 8-bit Vector Quantizer may also be found in [3] 

4. Conclusions 

In this paper we present upper and lower bounds on the Channel-Distortion for 
Vector Quantizers operating under channel errors. The bounds were obtained using 
Linear Programming arguments. Numerical examples are shown for the Binary 
Symmetric Channel with and without channel Error Correcting Code. For 
quantizers with 4 bits and more, the bounds are compared with the performance of 
10,000 random index assignments. For the Binary Symmetric Channel the upper 
bounds are close to the performance of the worst assignment found in the random 
assignment simulation. The lower bounds are sometimes more loose and a 
significant gap exists between the lower bound and the performance of the 
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assignment obtained by the Index Switching algorithm. This gap may be due to the 
relatively small number of assignments examined by simulations. This issue is under 
investigation. 

Utilization of an Error Correcting Code decreases the gap between the lower and 
the upper bounds the gap between the best and the worst assignment found in 
simulations, and both bounds exhibit a tighter behavior under this conditions. 
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